These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 25225270)

  • 1. Role of adaptor TrfA and ClpPC in controlling levels of SsrA-tagged proteins and antitoxins in Staphylococcus aureus.
    Donegan NP; Marvin JS; Cheung AL
    J Bacteriol; 2014 Dec; 196(23):4140-51. PubMed ID: 25225270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Staphylococcus aureus thiol/oxidative stress global regulator Spx controls trfA, a gene implicated in cell wall antibiotic resistance.
    Jousselin A; Kelley WL; Barras C; Lew DP; Renzoni A
    Antimicrob Agents Chemother; 2013 Jul; 57(7):3283-92. PubMed ID: 23629700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The YjbH adaptor protein enhances proteolysis of the transcriptional regulator Spx in Staphylococcus aureus.
    Engman J; Rogstam A; Frees D; Ingmer H; von Wachenfeldt C
    J Bacteriol; 2012 Mar; 194(5):1186-94. PubMed ID: 22194450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular determinants of MecA as a degradation tag for the ClpCP protease.
    Mei Z; Wang F; Qi Y; Zhou Z; Hu Q; Li H; Wu J; Shi Y
    J Biol Chem; 2009 Dec; 284(49):34366-75. PubMed ID: 19767395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The YjbH protein of Bacillus subtilis enhances ClpXP-catalyzed proteolysis of Spx.
    Garg SK; Kommineni S; Henslee L; Zhang Y; Zuber P
    J Bacteriol; 2009 Feb; 191(4):1268-77. PubMed ID: 19074380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteolytic regulation of toxin-antitoxin systems by ClpPC in Staphylococcus aureus.
    Donegan NP; Thompson ET; Fu Z; Cheung AL
    J Bacteriol; 2010 Mar; 192(5):1416-22. PubMed ID: 20038589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of SsrA-tagged proteins in streptococci.
    Tao L; Biswas I
    Microbiology (Reading); 2015 Apr; 161(Pt 4):884-94. PubMed ID: 25645948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Requirement of the zinc-binding domain of ClpX for Spx proteolysis in Bacillus subtilis and effects of disulfide stress on ClpXP activity.
    Zhang Y; Zuber P
    J Bacteriol; 2007 Nov; 189(21):7669-80. PubMed ID: 17827297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ClpCP Complex Modulates Respiratory Metabolism in Staphylococcus aureus and Is Regulated in a SrrAB-Dependent Manner.
    Mashruwala AA; Eilers BJ; Fuchs AL; Norambuena J; Earle CA; van de Guchte A; Tripet BP; Copié V; Boyd JM
    J Bacteriol; 2019 Aug; 201(15):. PubMed ID: 31109995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CspA regulation of Staphylococcus aureus carotenoid levels and σ
    Donegan NP; Manna AC; Tseng CW; Liu GY; Cheung AL
    Mol Microbiol; 2019 Aug; 112(2):532-551. PubMed ID: 31074903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trapping and proteomic identification of cellular substrates of the ClpP protease in Staphylococcus aureus.
    Feng J; Michalik S; Varming AN; Andersen JH; Albrecht D; Jelsbak L; Krieger S; Ohlsen K; Hecker M; Gerth U; Ingmer H; Frees D
    J Proteome Res; 2013 Feb; 12(2):547-58. PubMed ID: 23253041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ClpXP protease is dispensable for degradation of unfolded proteins in Staphylococcus aureus.
    Stahlhut SG; Alqarzaee AA; Jensen C; Fisker NS; Pereira AR; Pinho MG; Thomas VC; Frees D
    Sci Rep; 2017 Sep; 7(1):11739. PubMed ID: 28924169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of general and regulatory proteolysis in Bacillus subtilis cells.
    Kirstein J; Strahl H; Molière N; Hamoen LW; Turgay K
    Mol Microbiol; 2008 Nov; 70(3):682-94. PubMed ID: 18786145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide interaction screen for Mycobacterium tuberculosis ClpCP protease reveals toxin-antitoxin systems as a major substrate class.
    Ziemski M; Leodolter J; Taylor G; Kerschenmeyer A; Weber-Ban E
    FEBS J; 2021 Jan; 288(1):111-126. PubMed ID: 32301575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clp-dependent proteolysis of the LexA N-terminal domain in Staphylococcus aureus.
    Cohn MT; Kjelgaard P; Frees D; Penadés JR; Ingmer H
    Microbiology (Reading); 2011 Mar; 157(Pt 3):677-684. PubMed ID: 21183573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. YjbH Solubility Controls Spx in
    Panasenko OO; Bezrukov F; Komarynets O; Renzoni A
    Front Microbiol; 2020; 11():113. PubMed ID: 32117138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple pathways of Spx (YjbD) proteolysis in Bacillus subtilis.
    Nakano S; Zheng G; Nakano MM; Zuber P
    J Bacteriol; 2002 Jul; 184(13):3664-70. PubMed ID: 12057962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP.
    Griffith KL; Grossman AD
    Mol Microbiol; 2008 Nov; 70(4):1012-25. PubMed ID: 18811726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptor bypass mutations of Bacillus subtilis spx suggest a mechanism for YjbH-enhanced proteolysis of the regulator Spx by ClpXP.
    Chan CM; Hahn E; Zuber P
    Mol Microbiol; 2014 Aug; 93(3):426-38. PubMed ID: 24942655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoplasmic degradation of ssrA-tagged proteins.
    Farrell CM; Grossman AD; Sauer RT
    Mol Microbiol; 2005 Sep; 57(6):1750-61. PubMed ID: 16135238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.