These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25225379)

  • 1. Ten-percent solar-to-fuel conversion with nonprecious materials.
    Cox CR; Lee JZ; Nocera DG; Buonassisi T
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14057-61. PubMed ID: 25225379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves.
    Surendranath Y; Bediako DK; Nocera DG
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15617-21. PubMed ID: 22689962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts.
    Reece SY; Hamel JA; Sung K; Jarvi TD; Esswein AJ; Pijpers JJ; Nocera DG
    Science; 2011 Nov; 334(6056):645-8. PubMed ID: 21960528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-cost high-efficiency system for solar-driven conversion of CO
    Huan TN; Dalla Corte DA; Lamaison S; Karapinar D; Lutz L; Menguy N; Foldyna M; Turren-Cruz SH; Hagfeldt A; Bella F; Fontecave M; Mougel V
    Proc Natl Acad Sci U S A; 2019 May; 116(20):9735-9740. PubMed ID: 30918130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The artificial leaf.
    Nocera DG
    Acc Chem Res; 2012 May; 45(5):767-76. PubMed ID: 22475039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-splitting catalysis and solar fuel devices: artificial leaves on the move.
    Joya KS; Joya YF; Ocakoglu K; van de Krol R
    Angew Chem Int Ed Engl; 2013 Sep; 52(40):10426-37. PubMed ID: 23955876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis.
    Dogutan DK; Nocera DG
    Acc Chem Res; 2019 Nov; 52(11):3143-3148. PubMed ID: 31593438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solar Water Splitting Using Earth-Abundant Electrocatalysts Driven by High-Efficiency Perovskite Solar Cells.
    Asiri AM; Ren D; Zhang H; Bahadar Khan S; Alamry KA; Marwani HM; Sherjeel Javed Khan M; Adeosun WA; Zakeeruddin SM; Grätzel M
    ChemSusChem; 2022 Feb; 15(4):e202102471. PubMed ID: 34962096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Earth-abundant Materials for Large-scale Solar Fuels Generation.
    Prabhakar RR; Cui W; Tilley SD
    Chimia (Aarau); 2018 May; 72(5):333-337. PubMed ID: 29789072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double Perovskite Cobaltites Integrated in a Monolithic and Noble Metal-Free Photoelectrochemical Device for Efficient Water Splitting.
    Zhu J; Guđmundsdóttir JB; Strandbakke R; Both KG; Aarholt T; Carvalho PA; Sørby MH; Jensen IJT; Guzik MN; Norby T; Haug H; Chatzitakis A
    ACS Appl Mater Interfaces; 2021 May; 13(17):20313-20325. PubMed ID: 33904298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid photoelectrochemical and photovoltaic cells for simultaneous production of chemical fuels and electrical power.
    Segev G; Beeman JW; Greenblatt JB; Sharp ID
    Nat Mater; 2018 Dec; 17(12):1115-1121. PubMed ID: 30374204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Highly Versatile and Adaptable Artificial Leaf with Floatability and Planar Compact Design Applicable in Various Natural Environments.
    Kim S; Kim T; Lee S; Baek S; Park T; Yong K
    Adv Mater; 2017 Sep; 29(34):. PubMed ID: 28714231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward practical solar hydrogen production - an artificial photosynthetic leaf-to-farm challenge.
    Kim JH; Hansora D; Sharma P; Jang JW; Lee JS
    Chem Soc Rev; 2019 Apr; 48(7):1908-1971. PubMed ID: 30855624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion.
    Zhang D; Shi J; Zi W; Wang P; Liu SF
    ChemSusChem; 2017 Nov; 10(22):4324-4341. PubMed ID: 28977741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectrochemical devices for solar water splitting - materials and challenges.
    Jiang C; Moniz SJA; Wang A; Zhang T; Tang J
    Chem Soc Rev; 2017 Jul; 46(15):4645-4660. PubMed ID: 28644493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid bioinorganic approach to solar-to-chemical conversion.
    Nichols EM; Gallagher JJ; Liu C; Su Y; Resasco J; Yu Y; Sun Y; Yang P; Chang MC; Chang CJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11461-6. PubMed ID: 26305947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Light-Induced Degradation on the Performance of Multijunction Thin-Film Silicon-Based Photoelectrochemical Water-Splitting Devices.
    Urbain F; Smirnov V; Becker JP; Finger F
    ACS Omega; 2016 Nov; 1(5):832-836. PubMed ID: 31457165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals.
    Highfield J
    Molecules; 2015 Apr; 20(4):6739-93. PubMed ID: 25884553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.