These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25225619)

  • 1. Use of a stop-flow programmable shunt valve to maximize CNS chemotherapy delivery in a pediatric patient with acute lymphoblastic leukemia.
    Palejwala SK; Stidd DA; Skoch JM; Gupta P; Lemole GM; Weinand ME
    Surg Neurol Int; 2014; 5(Suppl 4):S273-7. PubMed ID: 25225619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ventriculoperitoneal Shunts Equipped with On-Off Valves for Intraventricular Therapies in Patients with Communicating Hydrocephalus due to Leptomeningeal Metastases.
    Burger MC; Wagner M; Franz K; Harter PN; Bähr O; Steinbach JP; Senft C
    J Clin Med; 2018 Aug; 7(8):. PubMed ID: 30110924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Safety profile of long-term intraventricular access devices in pediatric patients receiving radioimmunotherapy for central nervous system malignancies.
    Kramer K; Smith M; Souweidane MM
    Pediatr Blood Cancer; 2014 Sep; 61(9):1590-2. PubMed ID: 24777835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A randomized, controlled study of a programmable shunt valve versus a conventional valve for patients with hydrocephalus. Hakim-Medos Investigator Group.
    Pollack IF; Albright AL; Adelson PD
    Neurosurgery; 1999 Dec; 45(6):1399-408; discussion 1408-11. PubMed ID: 10598708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lumboperitoneal Shunt Combined With Ommaya Reservoir Enables Continued Intraventricular Chemotherapy for Leptomeningeal Metastasis With Increased Intracranial Pressure.
    Woo B; Gwak HS; Kwon JW; Shin SH; Yoo H
    Brain Tumor Res Treat; 2022 Oct; 10(4):237-243. PubMed ID: 36347638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying intraventricular drug delivery utilizing programmable ventriculoperitoneal shunts as the intraventricular access device.
    McThenia SS; Pandit-Taskar N; Grkovski M; Donzelli MA; Diagana S; Greenfield JP; Souweidane MM; Kramer K
    J Neurooncol; 2022 May; 157(3):457-463. PubMed ID: 35403968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk factors associated with conversion of an Ommaya reservoir to a permanent cerebrospinal fluid shunt in preterm posthemorrhagic hydrocephalus.
    Palpan Flores A; Saceda Gutiérrez J; Brin Reyes JR; Sierra Tamayo J; Carceller Benito F
    J Neurosurg Pediatr; 2020 Jan; 25(4):417-424. PubMed ID: 31952037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rare case of shunt malfunction attributable to a broken Codman-Hakim programmable shunt valve after a blow to the head.
    Okazaki T; Oki S; Migita K; Kurisu K
    Pediatr Neurosurg; 2005; 41(5):241-3. PubMed ID: 16195675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ventricular reservoir versus ventriculosubgaleal shunt for posthemorrhagic hydrocephalus in preterm infants: infection risks and ventriculoperitoneal shunt rate.
    Wang JY; Amin AG; Jallo GI; Ahn ES
    J Neurosurg Pediatr; 2014 Nov; 14(5):447-54. PubMed ID: 25148212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surgical management of hydrocephalus secondary to intraventricular hemorrhage in the preterm infant.
    Christian EA; Melamed EF; Peck E; Krieger MD; McComb JG
    J Neurosurg Pediatr; 2016 Mar; 17(3):278-84. PubMed ID: 26565942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The programmable adult Codman Hakim valve is useful even in very small children with hydrocephalus. A 7-year retrospective study with special focus on cost/benefit analysis.
    Arnell K; Eriksson E; Olsen L
    Eur J Pediatr Surg; 2006 Feb; 16(1):1-7. PubMed ID: 16544218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benefit of ventriculoperitoneal cerebrospinal fluid shunting and intrathecal chemotherapy in neoplastic meningitis: a retrospective, case-controlled study.
    Lin N; Dunn IF; Glantz M; Allison DL; Jensen R; Johnson MD; Friedlander RM; Kesari S
    J Neurosurg; 2011 Oct; 115(4):730-6. PubMed ID: 21721878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Posthemorrhagic hydrocephalus in preterm infants: long-term follow-up and shunt-related complications.
    Reinprecht A; Dietrich W; Berger A; Bavinzski G; Weninger M; Czech T
    Childs Nerv Syst; 2001 Nov; 17(11):663-9. PubMed ID: 11734984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early surgical management and long-term surgical outcome for intraventricular hemorrhage-related posthemorrhagic hydrocephalus in shunt-treated premature infants.
    Bock HC; Feldmann J; Ludwig HC
    J Neurosurg Pediatr; 2018 Jul; 22(1):61-67. PubMed ID: 29726792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmable shunt valve interactions with osseointegrated hearing devices.
    J Neurosurg Pediatr; 2017 Apr; 19(4):384-390. PubMed ID: 28186475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 2: Management of posthemorrhagic hydrocephalus in premature infants.
    Mazzola CA; Choudhri AF; Auguste KI; Limbrick DD; Rogido M; Mitchell L; Flannery AM;
    J Neurosurg Pediatr; 2014 Nov; 14 Suppl 1():8-23. PubMed ID: 25988778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experience with a programmable valve shunt system.
    Yamashita N; Kamiya K; Yamada K
    J Neurosurg; 1999 Jul; 91(1):26-31. PubMed ID: 10389876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of Programmable Shunt Setting Using CT: Feasibility Study.
    Slonimsky E; Zacharia B; Mamourian A
    Cureus; 2021 Nov; 13(11):e19818. PubMed ID: 34963836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early programmable valve malfunctions in pediatric hydrocephalus.
    Mangano FT; Menendez JA; Habrock T; Narayan P; Leonard JR; Park TS; Smyth MD
    J Neurosurg; 2005 Dec; 103(6 Suppl):501-7. PubMed ID: 16383248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Congenital hydrocephalus and ventriculoperitoneal shunts: influence of etiology and programmable shunts on revisions.
    Notarianni C; Vannemreddy P; Caldito G; Bollam P; Wylen E; Willis B; Nanda A
    J Neurosurg Pediatr; 2009 Dec; 4(6):547-52. PubMed ID: 19951042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.