These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

502 related articles for article (PubMed ID: 25225738)

  • 41. Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting.
    Ji M; Cai J; Ma Y; Qi L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3651-60. PubMed ID: 26517010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly sensitive photoelectrochemical sensing of bisphenol A based on zinc phthalocyanine/TiO
    Fan Z; Fan L; Shuang S; Dong C
    Talanta; 2018 Nov; 189():16-23. PubMed ID: 30086901
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays.
    Wolcott A; Smith WA; Kuykendall TR; Zhao Y; Zhang JZ
    Small; 2009 Jan; 5(1):104-11. PubMed ID: 19040214
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interfacial Charge Transport in 1D TiO
    Yu Z; Liu H; Zhu M; Li Y; Li W
    Small; 2021 Mar; 17(9):e1903378. PubMed ID: 31657147
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays.
    Wang J; Feng B; Su J; Guo L
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting.
    Chen Y; Li A; Yue X; Wang LN; Huang ZH; Kang F; Volinsky AA
    Nanoscale; 2016 Jul; 8(27):13228-35. PubMed ID: 26926569
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced Photoelectrochemical Water Oxidation Performance in Bilayer TiO
    Li H; Yin M; Li X; Mo R
    ChemSusChem; 2021 Jun; 14(11):2331-2340. PubMed ID: 33650268
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Black 3D-TiO
    Meng M; Feng Y; Li C; Gan Z; Yuan H; Zhang H
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564156
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improved photoelectrochemical water oxidation kinetics using a TiO2 nanorod array photoanode decorated with graphene oxide in a neutral pH solution.
    Chae SY; Sudhagar P; Fujishima A; Hwang YJ; Joo OS
    Phys Chem Chem Phys; 2015 Mar; 17(12):7714-9. PubMed ID: 25711207
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays.
    Yin Y; Jin Z; Hou F
    Nanotechnology; 2007 Dec; 18(49):495608. PubMed ID: 20442481
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Facile preparation of tremella-like TiO
    Li Z; Ng KH; Xu S; Zhang Y; Lei Y; Huang J; Lai Y
    Chemosphere; 2022 Nov; 307(Pt 2):135758. PubMed ID: 35872066
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ZIF-8 derived ZnO/TiO
    Ding Q; Xu D; Ding J; Fan W; Zhang X; Li Y; Shi W
    J Colloid Interface Sci; 2021 Dec; 603():120-130. PubMed ID: 34186389
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of novel AuPd nanoparticles decorated one-dimensional ZnO nanorod arrays with enhanced photoelectrochemical water splitting activity.
    Lu Y; Zhang J; Ge L; Han C; Qiu P; Fang S
    J Colloid Interface Sci; 2016 Dec; 483():146-153. PubMed ID: 27552423
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Facile and Controllable Vapor-Phase Hydrothermal Approach to Anionic S
    Yu H; Zhang M; Wang Y; Yang H; Liu Y; Yang L; He G; Sun Z
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32911744
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Constructing a ZnIn
    Guan Z; Wang P; Li Q; Li G; Yang J
    Dalton Trans; 2018 May; 47(19):6800-6807. PubMed ID: 29722778
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rational design of 3D/2D In
    Zhu Q; Sun Y; Xu S; Li Y; Lin X; Qin Y
    J Hazard Mater; 2020 Jan; 382():121098. PubMed ID: 31479823
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CdS Nanoparticle-Modified α-Fe
    Yin R; Liu M; Tang R; Yin L
    Nanoscale Res Lett; 2017 Sep; 12(1):520. PubMed ID: 28866742
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Charge Separation in TiO2/BDD Heterojunction Thin Film for Enhanced Photoelectrochemical Performance.
    Terashima C; Hishinuma R; Roy N; Sugiyama Y; Latthe SS; Nakata K; Kondo T; Yuasa M; Fujishima A
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1583-8. PubMed ID: 26756353
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plasmon-induced hole-depletion layer on p-n heterojunction for highly efficient photoelectrochemical water splitting.
    Hu Z; Wang R; Han C; Chen R
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):946-954. PubMed ID: 36041246
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 1D WO
    Li Y; Liu Z; Ruan M; Guo Z; Li X
    ChemSusChem; 2019 Dec; 12(24):5282-5290. PubMed ID: 31659855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.