These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 25225742)

  • 1. Advanced new relaxation filter-selective signal excitation methods for (13)C solid-state nuclear magnetic resonance.
    Asada M; Nemoto T; Mimura H; Sako K
    Anal Chem; 2014 Oct; 86(20):10091-8. PubMed ID: 25225742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of qualitative and quantitative analysis methods in pharmaceutical application with new selective signal excitation methods for 13 C solid-state nuclear magnetic resonance using 1 H T1rho relaxation time.
    Nasu M; Nemoto T; Mimura H; Sako K
    J Pharm Sci; 2013 Jan; 102(1):154-61. PubMed ID: 23147444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmaceutical Applications of Relaxation Filter-Selective Signal Excitation Methods for ¹⁹F Solid-State Nuclear Magnetic Resonance: Case Study With Atorvastatin in Dosage Formulation.
    Asada MN; Nemoto T; Mimura H
    J Pharm Sci; 2016 Mar; 105(3):1233-8. PubMed ID: 26886305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. (13)C Solid-state NMR chromatography by magic angle spinning (1)H T(1) relaxation ordered spectroscopy.
    Nishiyama Y; Frey MH; Mukasa S; Utsumi H
    J Magn Reson; 2010 Feb; 202(2):135-9. PubMed ID: 19900827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin-state-selective methods in solution- and solid-state biomolecular 13C NMR.
    Felli IC; Pierattelli R
    Prog Nucl Magn Reson Spectrosc; 2015 Feb; 84-85():1-13. PubMed ID: 25669738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy.
    Fu R; Li J; Cui J; Peng X
    J Magn Reson; 2016 Jul; 268():107-113. PubMed ID: 27187211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of
    Pisklak DM; Zielińska-Pisklak M; Szeleszczuk Ł
    Int J Pharm; 2016 Nov; 513(1-2):538-542. PubMed ID: 27667758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Solid-State
    Hill SJ; Bell TJ; Melton LD; Harris PJ
    Methods Mol Biol; 2020; 2149():203-223. PubMed ID: 32617937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating miscibility and molecular mobility of nifedipine-PVP amorphous solid dispersions using solid-state NMR spectroscopy.
    Yuan X; Sperger D; Munson EJ
    Mol Pharm; 2014 Jan; 11(1):329-37. PubMed ID: 24256090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explanation of the crystallization rate of amorphous nifedipine and phenobarbital from their molecular mobility as measured by (13)C nuclear magnetic resonance relaxation time and the relaxation time obtained from the heating rate dependence of the glass transition temperature.
    Aso Y; Yoshioka S; Kojima S
    J Pharm Sci; 2001 Jun; 90(6):798-806. PubMed ID: 11357180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast proton spin-lattice relaxation time in the rotating frame during the application of time averaged precession frequency.
    Zujović ZD; Bowmaker GA
    J Magn Reson; 2006 Aug; 181(2):336-41. PubMed ID: 16757196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid assessment of longitudinal relaxation time in materials and tissues with extremely fast signal decay using UTE sequences and the variable flip angle method.
    Springer F; Steidle G; Martirosian P; Syha R; Claussen CD; Schick F
    Invest Radiol; 2011 Oct; 46(10):610-7. PubMed ID: 21577126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative magnetic resonance methods for in vivo investigation of the human liver and spleen. Technical aspects and preliminary clinical results.
    Thomsen C
    Acta Radiol Suppl; 1996; 401():1-34. PubMed ID: 8604619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR signal analysis to attribute the components to the solid/liquid phases present in mixes and ice creams.
    Mariette F; Lucas T
    J Agric Food Chem; 2005 Mar; 53(5):1317-27. PubMed ID: 15740001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of cross - relaxation and molecular dynamics in the solid 3-(trifluoromethyl) benzoic acid by solid state NMR off - resonance.
    Woźniak-Braszak A
    Solid State Nucl Magn Reson; 2017 Feb; 81():8-10. PubMed ID: 27960099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional ultrashort echo time imaging of solid polymers on a 3-Tesla whole-body MRI scanner.
    Springer F; Martirosian P; Schwenzer NF; Szimtenings M; Kreisler P; Claussen CD; Schick F
    Invest Radiol; 2008 Nov; 43(11):802-8. PubMed ID: 18923260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of selective excitation on carbon longitudinal relaxation: Towards fast solid-state NMR techniques.
    Giffard M; Bardet M; Bersch B; Covès J; Hediger S
    J Magn Reson; 2009 Sep; 200(1):153-60. PubMed ID: 19576829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Higher sensitivity through selective (13)C excitation in solid-state NMR spectroscopy.
    Lopez JJ; Kaiser C; Asami S; Glaubitz C
    J Am Chem Soc; 2009 Nov; 131(44):15970-1. PubMed ID: 19886687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin lattice relaxation time measurements in two-dimensional nuclear magnetic resonance imaging: corrections for plane selection and pulse sequence.
    Rosen BR; Pykett IL; Brady TJ
    J Comput Assist Tomogr; 1984 Apr; 8(2):195-9. PubMed ID: 6323554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of proteoglycan depletion in articular cartilage using two-dimensional time domain nuclear magnetic resonance.
    Lattanzio PJ; Marshall KW; Damyanovich AZ; Peemoeller H
    Magn Reson Med; 2005 Dec; 54(6):1397-402. PubMed ID: 16265632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.