These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 25225749)
1. Design and fabrication of ultralight weight, adjustable multi-electrode probes for electrophysiological recordings in mice. Brunetti PM; Wimmer RD; Liang L; Siegle JH; Voigts J; Wilson M; Halassa MM J Vis Exp; 2014 Sep; (91):e51675. PubMed ID: 25225749 [TBL] [Abstract][Full Text] [Related]
2. Construction of microdrive arrays for chronic neural recordings in awake behaving mice. Chang EH; Frattini SA; Robbiati S; Huerta PT J Vis Exp; 2013 Jul; (77):e50470. PubMed ID: 23851569 [TBL] [Abstract][Full Text] [Related]
3. Low-cost and easy-fabrication lightweight drivable electrode array for multiple-regions electrophysiological recording in free-moving mice. Sun C; Cao Y; Huang J; Huang K; Lu Y; Zhong C J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34996053 [No Abstract] [Full Text] [Related]
4. Integration of silicon-based neural probes and micro-drive arrays for chronic recording of large populations of neurons in behaving animals. Michon F; Aarts A; Holzhammer T; Ruther P; Borghs G; McNaughton B; Kloosterman F J Neural Eng; 2016 Aug; 13(4):046018. PubMed ID: 27351591 [TBL] [Abstract][Full Text] [Related]
5. Scalable, Lightweight, Integrated and Quick-to-Assemble (SLIQ) Hyperdrives for Functional Circuit Dissection. Liang L; Oline SN; Kirk JC; Schmitt LI; Komorowski RW; Remondes M; Halassa MM Front Neural Circuits; 2017; 11():8. PubMed ID: 28243194 [TBL] [Abstract][Full Text] [Related]
6. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice. Osanai H; Kitamura T; Yamamoto J J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259 [TBL] [Abstract][Full Text] [Related]
7. A microdrive for use with glass or metal microelectrodes in recording from freely-moving rats. Deadwyler SA; Biela J; Rose G; West M; Lynch G Electroencephalogr Clin Neurophysiol; 1979 Dec; 47(6):752-4. PubMed ID: 91506 [TBL] [Abstract][Full Text] [Related]
8. TetrODrive: an open-source microdrive for combined electrophysiology and optophysiology. Brosch M; Vlasenko A; Ohl FW; Lippert MT J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33908896 [No Abstract] [Full Text] [Related]
9. Feedback controlled piezo-motor microdrive for accurate electrode positioning in chronic single unit recording in behaving mice. Yang S; Cho J; Lee S; Park K; Kim J; Huh Y; Yoon ES; Shin HS J Neurosci Methods; 2011 Feb; 195(2):117-27. PubMed ID: 20868709 [TBL] [Abstract][Full Text] [Related]
10. HOPE: Hybrid-Drive Combining Optogenetics, Pharmacology and Electrophysiology. Delcasso S; Denagamage S; Britton Z; Graybiel AM Front Neural Circuits; 2018; 12():41. PubMed ID: 29872379 [TBL] [Abstract][Full Text] [Related]
11. A Large-Scale Semi-Chronic Microdrive Recording System for Non-Human Primates. Dotson NM; Hoffman SJ; Goodell B; Gray CM Neuron; 2017 Nov; 96(4):769-782.e2. PubMed ID: 29107523 [TBL] [Abstract][Full Text] [Related]
12. Miniature motorized microdrive and commutator system for chronic neural recording in small animals. Fee MS; Leonardo A J Neurosci Methods; 2001 Dec; 112(2):83-94. PubMed ID: 11716944 [TBL] [Abstract][Full Text] [Related]
13. The systemDrive: a Multisite, Multiregion Microdrive with Independent Drive Axis Angling for Chronic Multimodal Systems Neuroscience Recordings in Freely Behaving Animals. Billard MW; Bahari F; Kimbugwe J; Alloway KD; Gluckman BJ eNeuro; 2018; 5(6):. PubMed ID: 30627656 [TBL] [Abstract][Full Text] [Related]
14. Intracortical probe arrays with silicon backbone and microelectrodes on thin polyimide wings enable long-term stable recordings Kilias A; Lee YT; Froriep UP; Sielaff C; Moser D; Holzhammer T; Egert U; Fang W; Paul O; Ruther P J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34781276 [No Abstract] [Full Text] [Related]
15. A procedure for implanting organized arrays of microwires for single-unit recordings in awake, behaving animals. Barker DJ; Root DH; Coffey KR; Ma S; West MO J Vis Exp; 2014 Feb; (84):e51004. PubMed ID: 24561332 [TBL] [Abstract][Full Text] [Related]
16. Three dimensional microelectrodes enable high signal and spatial resolution for neural seizure recordings in brain slices and freely behaving animals. Wijdenes P; Haider K; Gavrilovici C; Gunning B; Wolff MD; Lijnse T; Armstrong R; Teskey GC; Rho JM; Dalton C; Syed NI Sci Rep; 2021 Nov; 11(1):21952. PubMed ID: 34754055 [TBL] [Abstract][Full Text] [Related]
17. High-density electrophysiological recordings in macaque using a chronically implanted 128-channel passive silicon probe. Klein L; Pothof F; Raducanu BC; Klon-Lipok J; Shapcott KA; Musa S; Andrei A; Aarts AA; Paul O; Singer W; Ruther P J Neural Eng; 2020 Apr; 17(2):026036. PubMed ID: 32217819 [TBL] [Abstract][Full Text] [Related]
18. Semi-chronic laminar recordings in the brainstem of behaving marmoset monkeys. Pomberger T; Hage SR J Neurosci Methods; 2019 Jan; 311():186-192. PubMed ID: 30352210 [TBL] [Abstract][Full Text] [Related]
19. Construction of Local Field Potential Microelectrodes for in vivo Recordings from Multiple Brain Structures Simultaneously. Brodovskaya A; Shiono S; Batabyal T; Williamson J; Kapur J J Vis Exp; 2022 Mar; (181):. PubMed ID: 35343955 [TBL] [Abstract][Full Text] [Related]