BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25225957)

  • 1. Multigenerational exposure to ocean acidification during food limitation reveals consequences for copepod scope for growth and vital rates.
    Pedersen SA; Håkedal OJ; Salaberria I; Tagliati A; Gustavson LM; Jenssen BM; Olsen AJ; Altin D
    Environ Sci Technol; 2014 Oct; 48(20):12275-84. PubMed ID: 25225957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod.
    Thor P; Dupont S
    Glob Chang Biol; 2015 Jun; 21(6):2261-71. PubMed ID: 25430823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Habitat traits and food availability determine the response of marine invertebrates to ocean acidification.
    Pansch C; Schaub I; Havenhand J; Wahl M
    Glob Chang Biol; 2014 Mar; 20(3):765-77. PubMed ID: 24273082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct and indirect effects of elevated CO2 are revealed through shifts in phytoplankton, copepod development, and fatty acid accumulation.
    McLaskey AK; Keister JE; Schoo KL; Olson MB; Love BA
    PLoS One; 2019; 14(3):e0213931. PubMed ID: 30870509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of elevated carbon dioxide (CO2) concentrations on early developmental stages of the marine copepod Calanus finmarchicus Gunnerus (Copepoda: Calanoidae).
    Pedersen SA; Våge VT; Olsen AJ; Hammer KM; Altin D
    J Toxicol Environ Health A; 2014; 77(9-11):535-49. PubMed ID: 24754390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ocean acidification on copepods.
    Wang M; Jeong CB; Lee YH; Lee JS
    Aquat Toxicol; 2018 Mar; 196():17-24. PubMed ID: 29324394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A marine secondary producer respires and feeds more in a high CO2 ocean.
    Li W; Gao K
    Mar Pollut Bull; 2012 Apr; 64(4):699-703. PubMed ID: 22364924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Have we been underestimating the effects of ocean acidification in zooplankton?
    Cripps G; Lindeque P; Flynn KJ
    Glob Chang Biol; 2014 Nov; 20(11):3377-85. PubMed ID: 24782283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ocean Acidification Affects the Phyto-Zoo Plankton Trophic Transfer Efficiency.
    Cripps G; Flynn KJ; Lindeque PK
    PLoS One; 2016; 11(4):e0151739. PubMed ID: 27082737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment.
    Algueró-Muñiz M; Alvarez-Fernandez S; Thor P; Bach LT; Esposito M; Horn HG; Ecker U; Langer JAF; Taucher J; Malzahn AM; Riebesell U; Boersma M
    PLoS One; 2017; 12(4):e0175851. PubMed ID: 28410436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of ocean acidification on plankton community structure during a winter-to-summer succession: An imaging approach indicates that copepods can benefit from elevated CO2 via indirect food web effects.
    Taucher J; Haunost M; Boxhammer T; Bach LT; Algueró-Muñiz M; Riebesell U
    PLoS One; 2017; 12(2):e0169737. PubMed ID: 28178268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels.
    Jin P; Wang T; Liu N; Dupont S; Beardall J; Boyd PW; Riebesell U; Gao K
    Nat Commun; 2015 Oct; 6():8714. PubMed ID: 26503801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental salinity modulates the effects of elevated CO2 levels on juvenile hard-shell clams, Mercenaria mercenaria.
    Dickinson GH; Matoo OB; Tourek RT; Sokolova IM; Beniash E
    J Exp Biol; 2013 Jul; 216(Pt 14):2607-18. PubMed ID: 23531824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ocean acidification on the nutritional quality of marine phytoplankton for copepod reproduction.
    Meyers MT; Cochlan WP; Carpenter EJ; Kimmerer WJ
    PLoS One; 2019; 14(5):e0217047. PubMed ID: 31107897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification.
    Schlüter L; Lohbeck KT; Gröger JP; Riebesell U; Reusch TB
    Sci Adv; 2016 Jul; 2(7):e1501660. PubMed ID: 27419227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced transfer of organic matter to higher trophic levels caused by ocean acidification and its implications for export production: A mass balance approach.
    Boxhammer T; Taucher J; Bach LT; Achterberg EP; Algueró-Muñiz M; Bellworthy J; Czerny J; Esposito M; Haunost M; Hellemann D; Ludwig A; Yong JC; Zark M; Riebesell U; Anderson LG
    PLoS One; 2018; 13(5):e0197502. PubMed ID: 29799856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical adaptation to ocean acidification.
    Stillman JH; Paganini AW
    J Exp Biol; 2015 Jun; 218(Pt 12):1946-55. PubMed ID: 26085671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification.
    Eggers SL; Lewandowska AM; Barcelos E Ramos J; Blanco-Ameijeiras S; Gallo F; Matthiessen B
    Glob Chang Biol; 2014 Mar; 20(3):713-23. PubMed ID: 24115206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ocean acidification reduces transfer of essential biomolecules in a natural plankton community.
    Bermúdez JR; Riebesell U; Larsen A; Winder M
    Sci Rep; 2016 Jun; 6():27749. PubMed ID: 27324057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insensitivities of a subtropical productive coastal plankton community and trophic transfer to ocean acidification: Results from a microcosm study.
    Wang T; Jin P; Wells ML; Trick CG; Gao K
    Mar Pollut Bull; 2019 Apr; 141():462-471. PubMed ID: 30955757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.