These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25226269)

  • 1. A microfluidic technique to probe cell deformability.
    Hoelzle DJ; Varghese BA; Chan CK; Rowat AC
    J Vis Exp; 2014 Sep; (91):e51474. PubMed ID: 25226269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexed fluidic plunger mechanism for the measurement of red blood cell deformability.
    Myrand-Lapierre ME; Deng X; Ang RR; Matthews K; Santoso AT; Ma H
    Lab Chip; 2015 Jan; 15(1):159-67. PubMed ID: 25325848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic cytometer based on dual photodiode detection for cell size and deformability analysis.
    Ji QQ; Du GS; van Uden MJ; Fang Q; den Toonder JM
    Talanta; 2013 Jul; 111():178-82. PubMed ID: 23622542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions.
    Rowat AC; Jaalouk DE; Zwerger M; Ung WL; Eydelnant IA; Olins DE; Olins AL; Herrmann H; Weitz DA; Lammerding J
    J Biol Chem; 2013 Mar; 288(12):8610-8618. PubMed ID: 23355469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Deformability Cytometry: Rapid, Calibrated Measurements of Cell Mechanical Properties.
    Nyberg KD; Hu KH; Kleinman SH; Khismatullin DB; Butte MJ; Rowat AC
    Biophys J; 2017 Oct; 113(7):1574-1584. PubMed ID: 28978449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combined experimental and theoretical approach towards mechanophenotyping of biological cells using a constricted microchannel.
    Raj A; Dixit M; Doble M; Sen AK
    Lab Chip; 2017 Oct; 17(21):3704-3716. PubMed ID: 28983550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell squeezing as a robust, microfluidic intracellular delivery platform.
    Sharei A; Cho N; Mao S; Jackson E; Poceviciute R; Adamo A; Zoldan J; Langer R; Jensen KF
    J Vis Exp; 2013 Nov; (81):e50980. PubMed ID: 24300077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic micropipette aspiration for measuring the deformability of single cells.
    Guo Q; Park S; Ma H
    Lab Chip; 2012 Aug; 12(15):2687-95. PubMed ID: 22622288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells.
    Kwan JM; Guo Q; Kyluik-Price DL; Ma H; Scott MD
    Am J Hematol; 2013 Aug; 88(8):682-9. PubMed ID: 23674388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standing surface acoustic wave (SSAW)-based cell washing.
    Li S; Ding X; Mao Z; Chen Y; Nama N; Guo F; Li P; Wang L; Cameron CE; Huang TJ
    Lab Chip; 2015 Jan; 15(1):331-8. PubMed ID: 25372273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A device for investigation of natural cell mobility and deformability.
    Ledvina V; Klepárník K; Legartová S; Bártová E
    Electrophoresis; 2020 Jul; 41(13-14):1238-1244. PubMed ID: 32358820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous flow microfluidic cell inactivation with the use of insulating micropillars for multiple electroporation zones.
    Pudasaini S; Perera ATK; Das D; Ng SH; Yang C
    Electrophoresis; 2019 Sep; 40(18-19):2522-2529. PubMed ID: 31177580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Latest developments in microfluidic cell biology and analysis systems.
    Salieb-Beugelaar GB; Simone G; Arora A; Philippi A; Manz A
    Anal Chem; 2010 Jun; 82(12):4848-64. PubMed ID: 20462184
    [No Abstract]   [Full Text] [Related]  

  • 14. A membrane-based microfluidic device for mechano-chemical cell manipulation.
    Ravetto A; Hoefer IE; den Toonder JM; Bouten CV
    Biomed Microdevices; 2016 Apr; 18(2):31. PubMed ID: 26941177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Mechanotyping of a Single Cell with Two Consecutive Constrictions of Different Sizes and an Electrical Detection System.
    Sano M; Kaji N; Rowat AC; Yasaki H; Shao L; Odaka H; Yasui T; Higashiyama T; Baba Y
    Anal Chem; 2019 Oct; 91(20):12890-12899. PubMed ID: 31442026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Study of Particle-Fluid Flow Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device.
    Sato N; Yao J; Sugawara M; Takei M
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):453-463. PubMed ID: 29993454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Strategies for Understanding the Mechanics of Cells and Cell-Mimetic Systems.
    Dahl JB; Lin JM; Muller SJ; Kumar S
    Annu Rev Chem Biomol Eng; 2015; 6():293-317. PubMed ID: 26134738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The physical origins of transit time measurements for rapid, single cell mechanotyping.
    Nyberg KD; Scott MB; Bruce SL; Gopinath AB; Bikos D; Mason TG; Kim JW; Choi HS; Rowat AC
    Lab Chip; 2016 Aug; 16(17):3330-9. PubMed ID: 27435631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a 2D no-flow chamber to monitor hematopoietic stem cells.
    Cambier T; Honegger T; Vanneaux V; Berthier J; Peyrade D; Blanchoin L; Larghero J; Théry M
    Lab Chip; 2015 Jan; 15(1):77-85. PubMed ID: 25338534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3D mammalian cell separator biochip.
    Choudhury D; Ramsay WT; Kiss R; Willoughby NA; Paterson L; Kar AK
    Lab Chip; 2012 Mar; 12(5):948-53. PubMed ID: 22252519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.