These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25226304)

  • 1. Combining single-molecule manipulation and imaging for the study of protein-DNA interactions.
    Monico C; Belcastro G; Vanzi F; Pavone FS; Capitanio M
    J Vis Exp; 2014 Aug; (90):. PubMed ID: 25226304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-guided approach to site-specific fluorophore labeling of the lac repressor LacI.
    Kipper K; Eremina N; Marklund E; Tubasum S; Mao G; Lehmann LC; Elf J; Deindl S
    PLoS One; 2018; 13(6):e0198416. PubMed ID: 29856839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Next-Generation DNA Curtains for Single-Molecule Studies of Homologous Recombination.
    Soniat MM; Myler LR; Schaub JM; Kim Y; Gallardo IF; Finkelstein IJ
    Methods Enzymol; 2017; 592():259-281. PubMed ID: 28668123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sliding of a single lac repressor protein along DNA is tuned by DNA sequence and molecular switching.
    Tempestini A; Monico C; Gardini L; Vanzi F; Pavone FS; Capitanio M
    Nucleic Acids Res; 2018 Jun; 46(10):5001-5011. PubMed ID: 29584872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution, hybrid optical trapping methods, and their application to nucleic acid processing proteins.
    Chemla YR
    Biopolymers; 2016 Oct; 105(10):704-14. PubMed ID: 27225537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA recognition process of the lactose repressor protein studied via metadynamics and umbrella sampling simulations.
    Furini S; Domene C
    J Phys Chem B; 2014 Nov; 118(46):13059-65. PubMed ID: 25341013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring DNA binding to Escherichia coli lactose repressor using quartz crystal microbalance with dissipation.
    Xu J; Liu KW; Matthews KS; Biswal SL
    Langmuir; 2011 Apr; 27(8):4900-5. PubMed ID: 21410208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA surface exploration and operator bypassing during target search.
    Marklund E; van Oosten B; Mao G; Amselem E; Kipper K; Sabantsev A; Emmerich A; Globisch D; Zheng X; Lehmann LC; Berg OG; Johansson M; Elf J; Deindl S
    Nature; 2020 Jul; 583(7818):858-861. PubMed ID: 32581356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleic acid sensing with enzyme-DNA binding protein conjugates cascade and simple DNA nanostructures.
    Aktas GB; Skouridou V; Masip L
    Anal Bioanal Chem; 2017 May; 409(14):3623-3632. PubMed ID: 28331958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single molecule study of non-specific binding kinetics of LacI in mammalian cells.
    Caccianini L; Normanno D; Izeddin I; Dahan M
    Faraday Discuss; 2015; 184():393-400. PubMed ID: 26387491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the sliding movement of the lac repressor nonspecifically bound to DNA.
    Furini S; Domene C; Cavalcanti S
    J Phys Chem B; 2010 Feb; 114(6):2238-45. PubMed ID: 20095570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When Force Met Fluorescence: Single-Molecule Manipulation and Visualization of Protein-DNA Interactions.
    Chua GNL; Liu S
    Annu Rev Biophys; 2024 Jul; 53(1):169-191. PubMed ID: 38237015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA curtains: novel tools for imaging protein-nucleic acid interactions at the single-molecule level.
    Collins BE; Ye LF; Duzdevich D; Greene EC
    Methods Cell Biol; 2014; 123():217-34. PubMed ID: 24974030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions.
    Candelli A; Wuite GJ; Peterman EJ
    Phys Chem Chem Phys; 2011 Apr; 13(16):7263-72. PubMed ID: 21416086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating Optical Tweezers, DNA Tightropes, and Single-Molecule Fluorescence Imaging: Pitfalls and Traps.
    Wang J; Barnett JT; Pollard MR; Kad NM
    Methods Enzymol; 2017; 582():171-192. PubMed ID: 28062034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of a 91 bp LacI-mediated, negatively supercoiled DNA loop by atomic force microscope.
    Fulcrand G; Chapagain P; Dunlap D; Leng F
    FEBS Lett; 2016 Mar; 590(5):613-8. PubMed ID: 26878689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site.
    Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT
    J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of DNA binding determined in optical tweezers experiments.
    McCauley MJ; Williams MC
    Biopolymers; 2007 Feb; 85(2):154-68. PubMed ID: 17080421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA modeling reveals an extended lac repressor conformation in classic in vitro binding assays.
    Hirsh AD; Lillian TD; Lionberger TA; Perkins NC
    Biophys J; 2011 Aug; 101(3):718-26. PubMed ID: 21806940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine-tuning function: correlation of hinge domain interactions with functional distinctions between LacI and PurR.
    Swint-Kruse L; Larson C; Pettitt BM; Matthews KS
    Protein Sci; 2002 Apr; 11(4):778-94. PubMed ID: 11910022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.