These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25226926)

  • 41. Development of a model for the simulation of orthodontic load on lower first premolars using the finite element method.
    Dorow C; Sander FG
    J Orofac Orthop; 2005 May; 66(3):208-18. PubMed ID: 15959634
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Physical properties of root cementum: part 14. The amount of root resorption after force application for 12 weeks on maxillary and mandibular premolars: a microcomputed-tomography study.
    Paetyangkul A; Türk T; Elekdağ-Türk S; Jones AS; Petocz P; Darendeliler MA
    Am J Orthod Dentofacial Orthop; 2009 Oct; 136(4):492.e1-9; discussion 492-3. PubMed ID: 19815148
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanical design, analysis, and laboratory testing of a dental implant with axial flexibility similar to natural tooth with periodontal ligament.
    Pektaş Ö; Tönük E
    Proc Inst Mech Eng H; 2014 Nov; 228(11):1117-25. PubMed ID: 25378380
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Holographic determination of centers of rotation produced by orthodontic forces.
    Burstone CJ; Pryputniewicz RJ
    Am J Orthod; 1980 Apr; 77(4):396-409. PubMed ID: 6928741
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanical response of bone under short-term loading of a dental implant with an internal layer simulating the nonlinear behaviour of the periodontal ligament.
    Genna F; Paganelli C; Salgarello S; Sapelli P
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):305-18. PubMed ID: 14675951
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of the crown design and interface lute parameters on the stress-state of a machined crown-tooth system: a finite element analysis.
    Shahrbaf S; vanNoort R; Mirzakouchaki B; Ghassemieh E; Martin N
    Dent Mater; 2013 Aug; 29(8):e123-31. PubMed ID: 23706694
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Three-dimensional analysis of orthodontic tooth movement.
    Middleton J; Jones ML; Wilson AN
    J Biomed Eng; 1990 Jul; 12(4):319-27. PubMed ID: 2395358
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Numerical simulation of the biomechanical behaviour of multi-rooted teeth.
    Ziegler A; Keilig L; Kawarizadeh A; Jäger A; Bourauel C
    Eur J Orthod; 2005 Aug; 27(4):333-9. PubMed ID: 15961572
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A numerical simulation of tooth movement produced by molar uprighting spring.
    Kojima Y; Mizuno T; Fukui H
    Am J Orthod Dentofacial Orthop; 2007 Nov; 132(5):630-8. PubMed ID: 18005837
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A new orthodontic force simulation system with a simulated periodontal ligament to measure the delivered force at the root apex.
    Tochigi K; Arai K
    J Orthod; 2023 Dec; 50(4):378-384. PubMed ID: 37278012
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Maxillary posterior intrusion mechanics with mini-implant anchorage evaluated with the finite element method.
    Çifter M; Saraç M
    Am J Orthod Dentofacial Orthop; 2011 Nov; 140(5):e233-41. PubMed ID: 22051501
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The most appropriate position and number for absolute anchorages for orthodontic tooth movements.
    Yu JH; Takakuda K; Miyairi H; Soma K
    Comput Methods Biomech Biomed Engin; 2003 Apr; 6(2):153-62. PubMed ID: 12745429
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stress of tooth and PDL structure created by bite force.
    Kaewsuriyathumrong C; Soma K
    Bull Tokyo Med Dent Univ; 1993 Dec; 40(4):217-32. PubMed ID: 8275547
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Centers of rotation with transverse forces: an experimental study.
    Nägerl H; Burstone CJ; Becker B; Kubein-Messenburg D
    Am J Orthod Dentofacial Orthop; 1991 Apr; 99(4):337-45. PubMed ID: 2008893
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament.
    Qian L; Todo M; Morita Y; Matsushita Y; Koyano K
    Dent Mater; 2009 Oct; 25(10):1285-92. PubMed ID: 19560807
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Strains in periodontal ligament and alveolar bone associated with orthodontic tooth movement analyzed by finite element.
    Cattaneo PM; Dalstra M; Melsen B
    Orthod Craniofac Res; 2009 May; 12(2):120-8. PubMed ID: 19419455
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nonlinear stress-strain behavior of periodontal ligament under orthodontic loading.
    Toms SR; Lemons JE; Bartolucci AA; Eberhardt AW
    Am J Orthod Dentofacial Orthop; 2002 Aug; 122(2):174-9. PubMed ID: 12165771
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stresses induced by edgewise appliances in the periodontal ligament--a finite element study.
    McGuinness N; Wilson AN; Jones M; Middleton J; Robertson NR
    Angle Orthod; 1992; 62(1):15-22. PubMed ID: 1554158
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Three-dimensional finite element stress analysis on the periodontal tissue of maxillary canine].
    Qian Y; Fan Y; Jiang W; Cheng B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Apr; 21(2):196-9. PubMed ID: 15143538
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biomechanical behaviour of the periodontal ligament of the beagle dog during the first 5 hours of orthodontic force application.
    Jónsdóttir SH; Giesen EB; Maltha JC
    Eur J Orthod; 2006 Dec; 28(6):547-52. PubMed ID: 17101705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.