These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25226926)

  • 61. Initial stress induced in the periodontal tissue at the time of the application of various types of orthodontic force: three-dimensional analysis by means of the finite element method.
    Tanne K; Sakuda M
    J Osaka Univ Dent Sch; 1983 Dec; 23():143-71. PubMed ID: 6587040
    [No Abstract]   [Full Text] [Related]  

  • 62. Effective en-masse retraction design with orthodontic mini-implant anchorage: a finite element analysis.
    Sung SJ; Jang GW; Chun YS; Moon YS
    Am J Orthod Dentofacial Orthop; 2010 May; 137(5):648-57. PubMed ID: 20451784
    [TBL] [Abstract][Full Text] [Related]  

  • 63. An in vivo 3D micro-CT evaluation of tooth movement after the application of different force magnitudes in rat molar.
    Gonzales C; Hotokezaka H; Arai Y; Ninomiya T; Tominaga J; Jang I; Hotokezaka Y; Tanaka M; Yoshida N
    Angle Orthod; 2009 Jul; 79(4):703-14. PubMed ID: 19537865
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The effect of fluoride on orthodontic tooth movement in humans. A two- and three-dimensional evaluation.
    Karadeniz EI; Gonzales C; Elekdag-Turk S; Isci D; Sahin-Saglam AM; Alkis H; Turk T; Darendeliler MA
    Aust Orthod J; 2011 Nov; 27(2):94-101. PubMed ID: 22372264
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology.
    Chen J; Zhang Z; Chen X; Zhang C; Zhang G; Xu Z
    J Prosthet Dent; 2014 Nov; 112(5):1088-95.e1. PubMed ID: 24939253
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Histomorphometric evaluation of alveolar bone turnover between the maxilla and the mandible during experimental tooth movement in dogs.
    Deguchi T; Takano-Yamamoto T; Yabuuchi T; Ando R; Roberts WE; Garetto LP
    Am J Orthod Dentofacial Orthop; 2008 Jun; 133(6):889-97. PubMed ID: 18538254
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Optimum force magnitude for orthodontic tooth movement: a mathematic model.
    Ren Y; Maltha JC; Van 't Hof MA; Kuijpers-Jagtman AM
    Am J Orthod Dentofacial Orthop; 2004 Jan; 125(1):71-7. PubMed ID: 14718882
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Initial stress differences between sliding and sectional mechanics with an endosseous implant as anchorage: a 3-dimensional finite element analysis.
    Vásquez M; Calao E; Becerra F; Ossa J; Enríquez C; Fresneda E
    Angle Orthod; 2001 Aug; 71(4):247-56. PubMed ID: 11510633
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bone stress and strain after use of a miniplate for molar protraction and uprighting: a 3-dimensional finite element analysis.
    Largura LZ; Argenta MA; Sakima MT; Camargo ES; Guariza-Filho O; Tanaka OM
    Am J Orthod Dentofacial Orthop; 2014 Aug; 146(2):198-206. PubMed ID: 25085303
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Material properties of periodontal ligaments.
    Minch L
    Postepy Hig Med Dosw (Online); 2013 Dec; 67():1261-4. PubMed ID: 24379266
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Optimum conditions for parallel translation of maxillary anterior teeth under retraction force determined with the finite element method.
    Kim T; Suh J; Kim N; Lee M
    Am J Orthod Dentofacial Orthop; 2010 May; 137(5):639-47. PubMed ID: 20451783
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Development of a three-dimensional in vitro model system to study orthodontic tooth movement.
    Heckler AF; Mirzaei Z; Pereira I; Simmons CA; Gong SG
    Arch Oral Biol; 2013 Oct; 58(10):1498-510. PubMed ID: 23845751
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Assessment of the Maximum Amount of Orthodontic Force for PDL in Intact and Reduced Periodontium (Part I).
    Moga RA; Olteanu CD; Botez M; Buru SM
    Int J Environ Res Public Health; 2023 Jan; 20(3):. PubMed ID: 36767254
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The biomechanical behaviour of the hyalinized periodontal ligament in dogs during experimental orthodontic tooth movement.
    Jónsdóttir SH; Giesen EB; Maltha JC
    Eur J Orthod; 2012 Oct; 34(5):542-6. PubMed ID: 21478299
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Analysis of tooth movement in typodont using three-dimensional reverse engineering technology.
    Li X
    J Craniofac Surg; 2014 Sep; 25(5):e457-60. PubMed ID: 25148638
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Computer-aided analysis of the biomechanics of tooth movements.
    Bourauel C; Keilig L; Rahimi A; Reimann S; Ziegler A; Jäger A
    Int J Comput Dent; 2007 Jan; 10(1):25-40. PubMed ID: 17455766
    [TBL] [Abstract][Full Text] [Related]  

  • 77. In vitro analysis of the initial tooth mobility in a novel optomechanical set-up.
    Hinterkausen M; Bourauel C; Siebers G; Haase A; Drescher D; Nellen B
    Med Eng Phys; 1998 Jan; 20(1):40-9. PubMed ID: 9664284
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biomechanical finite-element investigation of the position of the centre of resistance of the upper incisors.
    Reimann S; Keilig L; Jäger A; Bourauel C
    Eur J Orthod; 2007 Jun; 29(3):219-24. PubMed ID: 17317864
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques.
    Martorelli M; Gerbino S; Giudice M; Ausiello P
    Dent Mater; 2013 Feb; 29(2):e1-10. PubMed ID: 23140842
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Orthodontic measuring and simulating systems (OMSS) for the static and dynamic analysis of tooth movement].
    Drescher D; Bourauel C; Thier M
    Fortschr Kieferorthop; 1991 Jun; 52(3):133-40. PubMed ID: 1894242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.