These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 25226932)

  • 1. Feasibility of compressive follower load on spine in a simplified dynamic state: a simulation study.
    Kim BS; Lim TH; Kwon TK; Han KS
    Biomed Mater Eng; 2014; 24(6):2319-29. PubMed ID: 25226932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal muscles can create compressive follower loads in the lumbar spine in a neutral standing posture.
    Han KS; Rohlmann A; Yang SJ; Kim BS; Lim TH
    Med Eng Phys; 2011 May; 33(4):472-8. PubMed ID: 21163681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of the lumbar spine by spinal muscle forces producing compressive follower loads: 3-dimensional computational study.
    Foresto T; Song I; Kim BS; Lim TH
    J Orthop Res; 2018 Nov; 36(11):3004-3012. PubMed ID: 29802732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of follower load on the range of motion, facet joint force, and intradiscal pressure of the cervical spine: a finite element study.
    Cai XY; YuChi CX; Du CF; Mo ZJ
    Med Biol Eng Comput; 2020 Aug; 58(8):1695-1705. PubMed ID: 32462554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of trunk muscles in generating follower load in the lumbar spine of neutral standing posture.
    Kim K; Kim YH
    J Biomech Eng; 2008 Aug; 130(4):041005. PubMed ID: 18601447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Load-sharing in the lumbosacral spine in neutral standing & flexed postures - A combined finite element and inverse static study.
    Liu T; Khalaf K; Naserkhaki S; El-Rich M
    J Biomech; 2018 Mar; 70():43-50. PubMed ID: 29153706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data.
    Rohlmann A; Bauer L; Zander T; Bergmann G; Wilke HJ
    J Biomech; 2006; 39(6):981-9. PubMed ID: 16549091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of optimal follower load path generated by trunk muscle coordination.
    Kim K; Kim YH; Lee S
    J Biomech; 2011 May; 44(8):1614-7. PubMed ID: 21453921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine.
    Renner SM; Natarajan RN; Patwardhan AG; Havey RM; Voronov LI; Guo BY; Andersson GB; An HS
    J Biomech; 2007; 40(6):1326-32. PubMed ID: 16843473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of compressive follower preload on the flexion-extension response of the human lumbar spine.
    Patwardhan AG; Havey RM; Carandang G; Simonds J; Voronov LI; Ghanayem AJ; Meade KP; Gavin TM; Paxinos O
    J Orthop Res; 2003 May; 21(3):540-6. PubMed ID: 12706029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the load-sharing along the ligamentous lumbosacral spine in flexed and extended postures: Finite element study.
    Naserkhaki S; Jaremko JL; Adeeb S; El-Rich M
    J Biomech; 2016 Apr; 49(6):974-982. PubMed ID: 26493346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Impact of Posture on the Mechanical Properties of a Functional Spinal Unit During Cyclic Compressive Loading.
    Barrett JM; Gooyers CE; Karakolis T; Callaghan JP
    J Biomech Eng; 2016 Aug; 138(8):. PubMed ID: 27322199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increase of load-carrying capacity under follower load generated by trunk muscles in lumbar spine.
    Kim K; Kim YH; Lee S
    Proc Inst Mech Eng H; 2007 Apr; 221(3):229-35. PubMed ID: 17539579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle force evaluation and the role of posture in human lumbar spine under compression.
    Shirazi-Adl A; Sadouk S; Parnianpour M; Pop D; El-Rich M
    Eur Spine J; 2002 Dec; 11(6):519-26. PubMed ID: 12522708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loads distributed in vivo among vertebrae, muscles, spinal ligaments, and intervertebral discs in a passively flexed lumbar spine.
    Mörl F; Günther M; Riede JM; Hammer M; Schmitt S
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2015-2047. PubMed ID: 32314072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of load position on muscle forces, internal loads and stability of the human spine in upright postures.
    El-Rich M; Shirazi-Adl A
    Comput Methods Biomech Biomed Engin; 2005 Dec; 8(6):359-68. PubMed ID: 16393873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles.
    Goel VK; Kong W; Han JS; Weinstein JN; Gilbertson LG
    Spine (Phila Pa 1976); 1993 Sep; 18(11):1531-41. PubMed ID: 8235826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational model of the lumbar spine musculature: implications of spinal surgery.
    Gatton ML; Pearcy MJ; Pettet GJ
    Clin Biomech (Bristol, Avon); 2011 Feb; 26(2):116-22. PubMed ID: 20956031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Total disc replacement positioning affects facet contact forces and vertebral body strains.
    Rundell SA; Auerbach JD; Balderston RA; Kurtz SM
    Spine (Phila Pa 1976); 2008 Nov; 33(23):2510-7. PubMed ID: 18978591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.