BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 25226934)

  • 1. Simulation of microcirculatory hemodynamics: estimation of boundary condition using particle swarm optimization.
    Pan Q; Wang R; Reglin B; Fang L; Pries AR; Ning G
    Biomed Mater Eng; 2014; 24(6):2341-7. PubMed ID: 25226934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks.
    Pan Q; Wang R; Reglin B; Cai G; Yan J; Pries AR; Ning G
    J Biomech Eng; 2014 Jan; 136(1):011009. PubMed ID: 24190506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An inverse problem for the motion of blood in small vessels.
    Munteanu L; Donescu S; Chiroiu V
    Physiol Meas; 2006 Sep; 27(9):865-80. PubMed ID: 16868352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel periodic boundary condition for computational hemodynamics studies.
    Bahramian F; Mohammadi H
    Proc Inst Mech Eng H; 2014 Jul; 228(7):643-51. PubMed ID: 25015666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fluid-particle interaction method for blood flow with special emphasis on red blood cell aggregation.
    Wang T; Xing Z
    Biomed Mater Eng; 2014; 24(6):2511-7. PubMed ID: 25226952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of estimation methods for computational fluid dynamics outflow boundary conditions using patient-specific carotid artery.
    Lee CJ; Uemiya N; Ishihara S; Zhang Y; Qian Y
    Proc Inst Mech Eng H; 2013 Jun; 227(6):663-71. PubMed ID: 23636745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical analysis of a red blood cell flowing through a thin micropore.
    Omori T; Hosaka H; Imai Y; Yamaguchi T; Ishikawa T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013008. PubMed ID: 24580321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental estimation of blood flow velocity through simulation of intravital microscopic imaging in micro-vessels by different image processing methods.
    Huang TC; Lin WC; Wu CC; Zhang G; Lin KP
    Microvasc Res; 2010 Dec; 80(3):477-83. PubMed ID: 20659483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational modeling of blood flow in asymmetrically bifurcating microvessels and its experimental validation.
    Lee TR; Hong JA; Yoo SS; Kim DW
    Int J Numer Method Biomed Eng; 2018 Jun; 34(6):e2981. PubMed ID: 29521012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of blood flow through microvascular capillary networks.
    Pozrikidis C
    Bull Math Biol; 2009 Aug; 71(6):1520-41. PubMed ID: 19267162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal and spatial variations of wall shear stress in the entrance region of microvessels.
    Oulaid O; Zhang J
    J Biomech Eng; 2015 Jun; 137(6):061008. PubMed ID: 25781004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization.
    Elhossini A; Areibi S; Dony R
    Evol Comput; 2010; 18(1):127-56. PubMed ID: 20064026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of blood flow rates in large microvascular networks.
    Fry BC; Lee J; Smith NP; Secomb TW
    Microcirculation; 2012 Aug; 19(6):530-8. PubMed ID: 22506980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting bifurcation angle effect on blood flow in the microvasculature.
    Yang J; Pak YE; Lee TR
    Microvasc Res; 2016 Nov; 108():22-8. PubMed ID: 27389627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid discrete-continuum approach for modelling microcirculatory blood flow.
    Shipley RJ; Smith AF; Sweeney PW; Pries AR; Secomb TW
    Math Med Biol; 2020 Feb; 37(1):40-57. PubMed ID: 30892609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and application of a one-dimensional blood flow model for microvascular networks.
    Lee J; Smith N
    Proc Inst Mech Eng H; 2008 May; 222(4):487-511. PubMed ID: 18595360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microvascular blood viscosity in vivo and the endothelial surface layer.
    Pries AR; Secomb TW
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2657-64. PubMed ID: 16040719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boundary conditions in simulation of stenosed coronary arteries.
    Mohammadi H; Bahramian F
    Cardiovasc Eng; 2009 Sep; 9(3):83-91. PubMed ID: 19688262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical models for regulation of blood flow.
    Secomb TW
    Microcirculation; 2008 Nov; 15(8):765-75. PubMed ID: 18951240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.