These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 25226946)

  • 1. Influence of compliance on flow rate waveforms in hydraulic circuits for in vitro modeling the human circulatory system.
    He W; Wang Y; Gong X
    Biomed Mater Eng; 2014; 24(6):2457-63. PubMed ID: 25226946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a novel particle tracking algorithm in the flow visualization of an artificial abdominal aortic aneurysm.
    Zhang Y; Wang Y; He W; Yang B
    Biomed Mater Eng; 2014; 24(6):2585-91. PubMed ID: 25226961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of an abdominal aortic aneurysm on wave reflection in the aorta.
    Swillens A; Lanoye L; De Backer J; Stergiopulos N; Verdonck PR; Vermassen F; Segers P
    IEEE Trans Biomed Eng; 2008 May; 55(5):1602-11. PubMed ID: 18440906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of wall compliance on hemodynamics in models of abdominal aortic aneurysm.
    Gaillard E; Bergeron P; Deplano V
    J Endovasc Ther; 2007 Aug; 14(4):593-9. PubMed ID: 17696637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow-induced wall shear stress in abdominal aortic aneurysms: Part II--pulsatile flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):319-28. PubMed ID: 12186711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of pulsatility as a function of vascular input impedance: an in vitro study.
    Kaebnick BW; Giridharan GA; Koenig SC
    ASAIO J; 2007; 53(2):115-21. PubMed ID: 17413547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CFD and PTV steady flow investigation in an anatomically accurate abdominal aortic aneurysm.
    Boutsianis E; Guala M; Olgac U; Wildermuth S; Hoyer K; Ventikos Y; Poulikakos D
    J Biomech Eng; 2009 Jan; 131(1):011008. PubMed ID: 19045924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of ventricular input impedance on the hydrodynamic performance of bioprosthetic aortic roots in vitro.
    Jennings LM; Butterfield M; Walker PG; Watterson KG; Fisher J
    J Heart Valve Dis; 2001 Mar; 10(2):269-75. PubMed ID: 11297215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of the measured and predicted flowfield in a patient-specific model of an abdominal aortic aneurysm.
    O'Rourke MJ; McCullough JP
    Proc Inst Mech Eng H; 2008 Jul; 222(5):737-50. PubMed ID: 18756691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow-induced wall shear stress in abdominal aortic aneurysms: Part I--steady flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):309-18. PubMed ID: 12186710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow dynamics in anatomical models of abdominal aortic aneurysms: computational analysis of pulsatile flow.
    Finol EA; Amon CH
    Acta Cient Venez; 2003; 54(1):43-9. PubMed ID: 14515766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence suggests rigid aortic grafts increase systolic blood pressure: results of a preliminary study.
    O'Brien T; Morris L; McGloughlin T
    Med Eng Phys; 2008 Jan; 30(1):109-15. PubMed ID: 17360221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling pulsatile flow in aortic aneurysms: effect of non-Newtonian properties of blood.
    Khanafer KM; Gadhoke P; Berguer R; Bull JL
    Biorheology; 2006; 43(5):661-79. PubMed ID: 17047283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an in-vitro circulatory system with known resistance and capacitance.
    Offerdahl CD; Schaub JD; Koenig SC; Swope RD; Ewert DL
    Biomed Sci Instrum; 1996; 32():183-8. PubMed ID: 8672667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into the understanding of flow dynamics in an in vitro model for abdominal aortic aneurysms.
    Deplano V; Meyer C; Guivier-Curien C; Bertrand E
    Med Eng Phys; 2013 Jun; 35(6):800-9. PubMed ID: 22981221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic modeling of the outlet of a pulsatile pump incorporating a flow-dependent resistance.
    Huang H; Yang M; Wu S; Liao H
    Med Eng Phys; 2013 Aug; 35(8):1097-104. PubMed ID: 23253954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low pulse pressure with high pulsatile external left ventricular power: influence of aortic waves.
    Pahlevan NM; Gharib M
    J Biomech; 2011 Jul; 44(11):2083-9. PubMed ID: 21679951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational analysis of biomechanical contributors to possible endovascular graft failure.
    Li Z; Kleinstreuer C; Farber M
    Biomech Model Mechanobiol; 2005 Dec; 4(4):221-34. PubMed ID: 16270200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamics of the normal aorta compared to fusiform and saccular abdominal aortic aneurysms with emphasis on a potential thrombus formation mechanism.
    Biasetti J; Gasser TC; Auer M; Hedin U; Labruto F
    Ann Biomed Eng; 2010 Feb; 38(2):380-90. PubMed ID: 19936925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction.
    Scotti CM; Jimenez J; Muluk SC; Finol EA
    Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):301-22. PubMed ID: 18568827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.