These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
429 related articles for article (PubMed ID: 25226949)
1. Finite element analysis of the femur during stance phase of gait based on musculoskeletal model simulation. Seo JW; Kang DW; Kim JY; Yang ST; Kim DH; Choi JS; Tack GR Biomed Mater Eng; 2014; 24(6):2485-93. PubMed ID: 25226949 [TBL] [Abstract][Full Text] [Related]
2. Changes in hip joint contact stress during a gait cycle based on the individualized modeling method of "gait-musculoskeletal system-finite element". Xiong B; Yang P; Lin T; Xu J; Xie Y; Guo Y; Liu C; Zhou Q; Lai Q; He W; Wei Q; Zhang Q J Orthop Surg Res; 2022 May; 17(1):267. PubMed ID: 35568957 [TBL] [Abstract][Full Text] [Related]
3. No effect of femoral offset on bone implant micromotion in an experimental model. Amirouche F; Solitro G; Walia A Orthop Traumatol Surg Res; 2016 May; 102(3):379-85. PubMed ID: 26970866 [TBL] [Abstract][Full Text] [Related]
4. Physiologically based boundary conditions in finite element modelling. Speirs AD; Heller MO; Duda GN; Taylor WR J Biomech; 2007; 40(10):2318-23. PubMed ID: 17166504 [TBL] [Abstract][Full Text] [Related]
5. Gait analysis before or after varus osteotomy of the femur for hip osteoarthritis. Watanabe H; Shimada Y; Sato K; Tsutsumi Y; Sato M Biomed Mater Eng; 1998; 8(3-4):177-86. PubMed ID: 10065884 [TBL] [Abstract][Full Text] [Related]
6. Stress and strain distribution in the intact canine femur: finite element analysis. Shahar R; Banks-Sills L; Eliasy R Med Eng Phys; 2003 Jun; 25(5):387-95. PubMed ID: 12711236 [TBL] [Abstract][Full Text] [Related]
7. Femoral neck strain prediction during level walking using a combined musculoskeletal and finite element model approach. Altai Z; Montefiori E; van Veen B; A Paggiosi M; McCloskey EV; Viceconti M; Mazzà C; Li X PLoS One; 2021; 16(2):e0245121. PubMed ID: 33524024 [TBL] [Abstract][Full Text] [Related]
8. Strain distribution within the human femur due to physiological and simplified loading: finite element analysis using the muscle standardized femur model. Polgár K; Gill HS; Viceconti M; Murray DW; O'Connor JJ Proc Inst Mech Eng H; 2003; 217(3):173-89. PubMed ID: 12807158 [TBL] [Abstract][Full Text] [Related]
9. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking. Fraysse F; Dumas R; Cheze L; Wang X J Biomech; 2009 Oct; 42(14):2357-62. PubMed ID: 19699479 [TBL] [Abstract][Full Text] [Related]
10. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses]. Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433 [TBL] [Abstract][Full Text] [Related]
11. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
12. Contributions of individual muscles to hip joint contact force in normal walking. Correa TA; Crossley KM; Kim HJ; Pandy MG J Biomech; 2010 May; 43(8):1618-22. PubMed ID: 20176362 [TBL] [Abstract][Full Text] [Related]
13. An Integrated Musculoskeletal-Finite-Element Model to Evaluate Effects of Load Carriage on the Tibia During Walking. Xu C; Silder A; Zhang J; Hughes J; Unnikrishnan G; Reifman J; Rakesh V J Biomech Eng; 2016 Oct; 138(10):. PubMed ID: 27437640 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of knee joint muscle forces and tissue stresses-strains during gait in severe OA versus normal subjects. Adouni M; Shirazi-Adl A J Orthop Res; 2014 Jan; 32(1):69-78. PubMed ID: 24038150 [TBL] [Abstract][Full Text] [Related]
15. Sensitivity of the tibio-femoral response to finite element modeling parameters. Beillas P; Lee SW; Tashman S; Yang KH Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):209-21. PubMed ID: 17558649 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous prediction of muscle and contact forces in the knee during gait. Lin YC; Walter JP; Banks SA; Pandy MG; Fregly BJ J Biomech; 2010 Mar; 43(5):945-52. PubMed ID: 19962703 [TBL] [Abstract][Full Text] [Related]
17. Determination of muscle loading at the hip joint for use in pre-clinical testing. Heller MO; Bergmann G; Kassi JP; Claes L; Haas NP; Duda GN J Biomech; 2005 May; 38(5):1155-63. PubMed ID: 15797596 [TBL] [Abstract][Full Text] [Related]
18. Effect of the lateral rotators on load transfer in the human hip joint revealed by mechanical analysis. Weißgraeber P; V D Wall H; Khabbazeh S; Kroker AM; Becker W Ann Anat; 2012 Sep; 194(5):461-6. PubMed ID: 22694841 [TBL] [Abstract][Full Text] [Related]
19. Subject-specific hip geometry affects predicted hip joint contact forces during gait. Lenaerts G; De Groote F; Demeulenaere B; Mulier M; Van der Perre G; Spaepen A; Jonkers I J Biomech; 2008; 41(6):1243-52. PubMed ID: 18346745 [TBL] [Abstract][Full Text] [Related]
20. Effects of acetabular resurfacing component material and fixation on the strain distribution in the pelvis. Thompson MS; Northmore-Ball MD; Tanner KE Proc Inst Mech Eng H; 2002; 216(4):237-45. PubMed ID: 12206520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]