BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25226952)

  • 1. A fluid-particle interaction method for blood flow with special emphasis on red blood cell aggregation.
    Wang T; Xing Z
    Biomed Mater Eng; 2014; 24(6):2511-7. PubMed ID: 25226952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-dimensional numerical simulation of cell behavior in a flow chamber based on fluid-solid interaction.
    Bai L; Cui Y; Zhang Y; Zhao N
    Biomed Mater Eng; 2014; 24(6):2645-55. PubMed ID: 25226968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large scale simulation of red blood cell aggregation in shear flows.
    Xu D; Kaliviotis E; Munjiza A; Avital E; Ji C; Williams J
    J Biomech; 2013 Jul; 46(11):1810-7. PubMed ID: 23809770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulation of rheology of red blood cell rouleaux in microchannels.
    Wang T; Pan TW; Xing ZW; Glowinski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041916. PubMed ID: 19518265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The deformation behavior of multiple red blood cells in a capillary vessel.
    Gong X; Sugiyama K; Takagi S; Matsumoto Y
    J Biomech Eng; 2009 Jul; 131(7):074504. PubMed ID: 19640140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
    AlMomani T; Udaykumar HS; Marshall JS; Chandran KB
    Ann Biomed Eng; 2008 Jun; 36(6):905-20. PubMed ID: 18330703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow.
    Bagchi P; Johnson PC; Popel AS
    J Biomech Eng; 2005 Dec; 127(7):1070-80. PubMed ID: 16502649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of Deformation and Aggregation of Two Red Blood Cells in a Stenosed Microvessel by Dissipative Particle Dynamics.
    Xiao L; Liu Y; Chen S; Fu B
    Cell Biochem Biophys; 2016 Dec; 74(4):513-525. PubMed ID: 27704373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle method for computer simulation of red blood cell motion in blood flow.
    Tsubota K; Wada S; Yamaguchi T
    Comput Methods Programs Biomed; 2006 Aug; 83(2):139-46. PubMed ID: 16879895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.
    Alizadehrad D; Imai Y; Nakaaki K; Ishikawa T; Yamaguchi T
    J Biomech; 2012 Oct; 45(15):2684-9. PubMed ID: 22981440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma.
    Faivre M; Abkarian M; Bickraj K; Stone HA
    Biorheology; 2006; 43(2):147-59. PubMed ID: 16687784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A micro-scale simulation of red blood cell passage through symmetric and asymmetric bifurcated vessels.
    Wang T; Rongin U; Xing Z
    Sci Rep; 2016 Feb; 6():20262. PubMed ID: 26830454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A particle dynamic model of red blood cell aggregation kinetics.
    Fenech M; Garcia D; Meiselman HJ; Cloutier G
    Ann Biomed Eng; 2009 Nov; 37(11):2299-309. PubMed ID: 19669883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of microcirculatory hemodynamics: estimation of boundary condition using particle swarm optimization.
    Pan Q; Wang R; Reglin B; Fang L; Pries AR; Ning G
    Biomed Mater Eng; 2014; 24(6):2341-7. PubMed ID: 25226934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Syllectometry: the effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation.
    Dobbe JG; Streekstra GJ; Strackee J; Rutten MC; Stijnen JM; Grimbergen CA
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):97-106. PubMed ID: 12617529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis of red blood cell aggregates under shear flow.
    Chesnutt JK; Marshall JS
    Ann Biomed Eng; 2010 Mar; 38(3):714-28. PubMed ID: 20024623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of red blood cell behavior in a stenosed arteriole using the immersed boundary-lattice Boltzmann method.
    Vahidkhah K; Fatouraee N
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):239-56. PubMed ID: 25099328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions.
    Lerche D; Frömer D
    Biorheology; 2001; 38(2-3):249-62. PubMed ID: 11381179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method.
    Zhang J; Johnson PC; Popel AS
    J Biomech; 2008; 41(1):47-55. PubMed ID: 17888442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.