These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 25226953)

  • 1. 2D FSI determination of mechanical stresses on aneurismal walls.
    Veshkina N; Zbicinski I; Stefańczyk L
    Biomed Mater Eng; 2014; 24(6):2519-26. PubMed ID: 25226953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness.
    Scotti CM; Shkolnik AD; Muluk SC; Finol EA
    Biomed Eng Online; 2005 Nov; 4():64. PubMed ID: 16271141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow patterns and wall shear stresses in patient-specific models of the abdominal aortic aneurysm.
    Leung J; Wright A; Cheshire N; Thom SA; Hughes AD; Xu XY
    Stud Health Technol Inform; 2004; 103():235-42. PubMed ID: 15747926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model.
    Rissland P; Alemu Y; Einav S; Ricotta J; Bluestein D
    J Biomech Eng; 2009 Mar; 131(3):031001. PubMed ID: 19154060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm.
    Raghavan ML; Vorp DA; Federle MP; Makaroun MS; Webster MW
    J Vasc Surg; 2000 Apr; 31(4):760-9. PubMed ID: 10753284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraluminal thrombus and risk of rupture in patient specific abdominal aortic aneurysm - FSI modelling.
    Bluestein D; Dumont K; De Beule M; Ricotta J; Impellizzeri P; Verhegghe B; Verdonck P
    Comput Methods Biomech Biomed Engin; 2009 Feb; 12(1):73-81. PubMed ID: 18651282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture.
    Boyd AJ; Kuhn DC; Lozowy RJ; Kulbisky GP
    J Vasc Surg; 2016 Jun; 63(6):1613-9. PubMed ID: 25752691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction.
    Scotti CM; Jimenez J; Muluk SC; Finol EA
    Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):301-22. PubMed ID: 18568827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progression of abdominal aortic aneurysm towards rupture: refining clinical risk assessment using a fully coupled fluid-structure interaction method.
    Xenos M; Labropoulos N; Rambhia S; Alemu Y; Einav S; Tassiopoulos A; Sakalihasan N; Bluestein D
    Ann Biomed Eng; 2015 Jan; 43(1):139-53. PubMed ID: 25527320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid/structure interaction applied to the simulation of Abdominal Aortic Aneurysms.
    Pélerin JL; Kulik C; Goksu C; Coatrieux JL; Rochette M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1754-7. PubMed ID: 17945665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An investigation of the relationship between hemodynamics and thrombus deposition within patient-specific models of abdominal aortic aneurysm.
    O'Rourke MJ; McCullough JP; Kelly S
    Proc Inst Mech Eng H; 2012 Jul; 226(7):548-64. PubMed ID: 22913102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A robust approach for exploring hemodynamics and thrombus growth associations in abdominal aortic aneurysms.
    Tzirakis K; Kamarianakis Y; Metaxa E; Kontopodis N; Ioannou CV; Papaharilaou Y
    Med Biol Eng Comput; 2017 Aug; 55(8):1493-1506. PubMed ID: 28044244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid, solid and fluid-structure interaction simulations on patient-based abdominal aortic aneurysm models.
    Kelly S; O'Rourke M
    Proc Inst Mech Eng H; 2012 Apr; 226(4):288-304. PubMed ID: 22611869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abdominal aortic aneurysm wall mechanics and their relation to risk of rupture.
    Sonesson B; Sandgren T; Länne T
    Eur J Vasc Endovasc Surg; 1999 Dec; 18(6):487-93. PubMed ID: 10637144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models.
    Leung JH; Wright AR; Cheshire N; Crane J; Thom SA; Hughes AD; Xu Y
    Biomed Eng Online; 2006 May; 5():33. PubMed ID: 16712729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Relationship Between Pulsatile Flow Impingement and Intraluminal Thrombus Deposition in Abdominal Aortic Aneurysms.
    Lozowy RJ; Kuhn DC; Ducas AA; Boyd AJ
    Cardiovasc Eng Technol; 2017 Mar; 8(1):57-69. PubMed ID: 27896659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm.
    Di Martino ES; Guadagni G; Fumero A; Ballerini G; Spirito R; Biglioli P; Redaelli A
    Med Eng Phys; 2001 Nov; 23(9):647-55. PubMed ID: 11755809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow-induced wall shear stress in abdominal aortic aneurysms: Part II--pulsatile flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):319-28. PubMed ID: 12186711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A numerical study of fluid-structure coupled effect of abdominal aortic aneurysm.
    Cong Y; Wang L; Liu X
    Biomed Mater Eng; 2015; 26 Suppl 1():S245-55. PubMed ID: 26406009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.