These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 25226954)
1. Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints. Chen Y; Li G; Zhu Y; Zhao J; Cai H Biomed Mater Eng; 2014; 24(6):2527-35. PubMed ID: 25226954 [TBL] [Abstract][Full Text] [Related]
2. A passively safe cable driven upper limb rehabilitation exoskeleton. Chen Y; Fan J; Zhu Y; Zhao J; Cai H Technol Health Care; 2015; 23 Suppl 2():S197-202. PubMed ID: 26410484 [TBL] [Abstract][Full Text] [Related]
3. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints. Zhang F; Fu Y; Zhang Q; Wang S Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062 [TBL] [Abstract][Full Text] [Related]
4. Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety. Kang HB; Wang JH ISA Trans; 2013 Nov; 52(6):844-52. PubMed ID: 23906739 [TBL] [Abstract][Full Text] [Related]
5. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation. Ren Y; Kang SH; Park HS; Wu YN; Zhang LQ IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):490-9. PubMed ID: 23096119 [TBL] [Abstract][Full Text] [Related]
6. Redundancy resolution of the human arm and an upper limb exoskeleton. Kim H; Miller LM; Byl N; Abrams GM; Rosen J IEEE Trans Biomed Eng; 2012 Jun; 59(6):1770-9. PubMed ID: 22510944 [TBL] [Abstract][Full Text] [Related]
7. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation. Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095 [TBL] [Abstract][Full Text] [Related]
8. Kinematic design to improve ergonomics in human machine interaction. Schiele A; van der Helm FC IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):456-69. PubMed ID: 17190037 [TBL] [Abstract][Full Text] [Related]
9. Computer simulation of the dynamics of a human arm and orthosis linkage mechanism. Buckley MA; Johnson GR Proc Inst Mech Eng H; 1997; 211(5):349-57. PubMed ID: 9427830 [TBL] [Abstract][Full Text] [Related]
10. Application of EMG signals for controlling exoskeleton robots. Fleischer C; Wege A; Kondak K; Hommel G Biomed Tech (Berl); 2006 Dec; 51(5-6):314-9. PubMed ID: 17155866 [TBL] [Abstract][Full Text] [Related]
11. Real-time myoprocessors for a neural controlled powered exoskeleton arm. Cavallaro EE; Rosen J; Perry JC; Burns S IEEE Trans Biomed Eng; 2006 Nov; 53(11):2387-96. PubMed ID: 17073345 [TBL] [Abstract][Full Text] [Related]
12. Analysis of elbow-joints misalignment in upper-limb exoskeleton. Malosio M; Pedrocchi N; Vicentini F; Tosatti LM IEEE Int Conf Rehabil Robot; 2011; 2011():5975393. PubMed ID: 22275597 [TBL] [Abstract][Full Text] [Related]
13. A multi-DOF robotic exoskeleton interface for hand motion assistance. Iqbal J; Tsagarakis NG; Caldwell DG Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1575-8. PubMed ID: 22254623 [TBL] [Abstract][Full Text] [Related]
14. Quantifying anti-gravity torques for the design of a powered exoskeleton. Ragonesi D; Agrawal SK; Sample W; Rahman T IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):283-8. PubMed ID: 23096118 [TBL] [Abstract][Full Text] [Related]
15. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training. Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067 [TBL] [Abstract][Full Text] [Related]
16. Gravity compensation of an upper extremity exoskeleton. Moubarak S; Pham MT; Moreau R; Redarce T Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4489-93. PubMed ID: 21095778 [TBL] [Abstract][Full Text] [Related]
17. Kinematic analysis of the finger exoskeleton using MATLAB/Simulink. NasiĆowski K; Awrejcewicz J; Lewandowski D Acta Bioeng Biomech; 2014; 16(3):129-34. PubMed ID: 25307532 [TBL] [Abstract][Full Text] [Related]
18. Design of a self-aligning 3-DOF actuated exoskeleton for diagnosis and training of wrist and forearm after stroke. Beekhuis JH; Westerveld AJ; van der Kooij H; Stienen AH IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650357. PubMed ID: 24187176 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical study of upper-limb exoskeleton for resistance training with three-dimensional motion analysis system. Wu TM; Chen DZ J Rehabil Res Dev; 2014; 51(1):111-26. PubMed ID: 24805898 [TBL] [Abstract][Full Text] [Related]
20. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair. Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]