BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

837 related articles for article (PubMed ID: 25226998)

  • 41. Modulation of event-related desynchronization during kinematic and kinetic hand movements.
    Nakayashiki K; Saeki M; Takata Y; Hayashi Y; Kondo T
    J Neuroeng Rehabil; 2014 May; 11():90. PubMed ID: 24886610
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A hybrid brain computer interface system based on the neurophysiological protocol and brain-actuated switch for wheelchair control.
    Cao L; Li J; Ji H; Jiang C
    J Neurosci Methods; 2014 May; 229():33-43. PubMed ID: 24713576
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Motor prediction in Brain-Computer Interfaces for controlling mobile robots.
    Geng T; Gan JQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():634-7. PubMed ID: 19162735
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines.
    Lu N; Li T; Ren X; Miao H
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):566-576. PubMed ID: 27542114
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Online control of a brain-computer interface using phase synchronization.
    Brunner C; Scherer R; Graimann B; Supp G; Pfurtscheller G
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2501-6. PubMed ID: 17153207
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New KF-PP-SVM classification method for EEG in brain-computer interfaces.
    Yang B; Han Z; Zan P; Wang Q
    Biomed Mater Eng; 2014; 24(6):3665-73. PubMed ID: 25227081
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis.
    Kamousi B; Liu Z; He B
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):166-71. PubMed ID: 16003895
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Stimulus-Independent Hybrid BCI Based on Motor Imagery and Somatosensory Attentional Orientation.
    Yao L; Sheng X; Zhang D; Jiang N; Mrachacz-Kersting N; Zhu X; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1674-1682. PubMed ID: 28328506
    [TBL] [Abstract][Full Text] [Related]  

  • 50. EEG-EOG based Virtual Keyboard: Toward Hybrid Brain Computer Interface.
    Hosni SM; Shedeed HA; Mabrouk MS; Tolba MF
    Neuroinformatics; 2019 Jul; 17(3):323-341. PubMed ID: 30368637
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Motor imagery-induced EEG patterns in individuals with spinal cord injury and their impact on brain-computer interface accuracy.
    Müller-Putz GR; Daly I; Kaiser V
    J Neural Eng; 2014 Jun; 11(3):035011. PubMed ID: 24835837
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Boosting-Based Spatial-Spectral Model for Stroke Patients' EEG Analysis in Rehabilitation Training.
    Liu Y; Zhang H; Chen M; Zhang L
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):169-79. PubMed ID: 26302519
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A brain-computer interface method combined with eye tracking for 3D interaction.
    Lee EC; Woo JC; Kim JH; Whang M; Park KR
    J Neurosci Methods; 2010 Jul; 190(2):289-98. PubMed ID: 20580646
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A wavelet-based time-frequency analysis approach for classification of motor imagery for brain-computer interface applications.
    Qin L; He B
    J Neural Eng; 2005 Dec; 2(4):65-72. PubMed ID: 16317229
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Continuous detection of motor imagery in a four-class asynchronous BCI.
    Sadeghian EB; Moradi MH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3241-4. PubMed ID: 18002686
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Amplitude and phase coupling measures for feature extraction in an EEG-based brain-computer interface.
    Wei Q; Wang Y; Gao X; Gao S
    J Neural Eng; 2007 Jun; 4(2):120-9. PubMed ID: 17409486
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cortical imaging of event-related (de)synchronization during online control of brain-computer interface using minimum-norm estimates in frequency domain.
    Yuan H; Doud A; Gururajan A; He B
    IEEE Trans Neural Syst Rehabil Eng; 2008 Oct; 16(5):425-31. PubMed ID: 18990646
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Toward self-paced brain-computer communication: navigation through virtual worlds.
    Scherer R; Lee F; Schlogl A; Leeb R; Bischof H; Pfurtscheller G
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):675-82. PubMed ID: 18270004
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Trial pruning for classification of single-trial EEG data during motor imagery.
    Wang B; Wong C; Wan F; Mak PU; Mak PI; Vai MI
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4666-9. PubMed ID: 21096242
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combining ERD and ERS features to create a system-paced BCI.
    Thomas E; Fruitet J; Clerc M
    J Neurosci Methods; 2013 Jun; 216(2):96-103. PubMed ID: 23624244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 42.