BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25227011)

  • 1. Development of visible and NIR imaging equipment for small animals with smart pad.
    Eum NS; Han JH; Seong KW; Lee JH; Park HJ
    Biomed Mater Eng; 2014; 24(6):3033-41. PubMed ID: 25227011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative real-time catheter-based fluorescence molecular imaging in mice.
    Upadhyay R; Sheth RA; Weissleder R; Mahmood U
    Radiology; 2007 Nov; 245(2):523-31. PubMed ID: 17940307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An excitation wavelength-scanning spectral imaging system for preclinical imaging.
    Leavesley S; Jiang Y; Patsekin V; Rajwa B; Robinson JP
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023707. PubMed ID: 18315305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies.
    Xu H; Springett R; Dehghani H; Pogue BW; Paulsen KD; Dunn JF
    Appl Opt; 2005 Apr; 44(11):2177-88. PubMed ID: 15835363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Mobile Phone Performance for Near-Infrared Fluorescence Imaging.
    Ghassemi P; Wang B; Wang J; Wang Q; Chen Y; Joshua Pfefer T
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1650-1653. PubMed ID: 28113231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared autofluorescence imaging of cutaneous melanins and human skin in vivo.
    Han X; Lui H; McLean DI; Zeng H
    J Biomed Opt; 2009; 14(2):024017. PubMed ID: 19405747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a novel portable multi-channel near infrared spectroscopy system.
    Kostic MN; Vartanian T; Culjat M; Singh R; Grundfest WS
    Stud Health Technol Inform; 2013; 184():230-4. PubMed ID: 23400162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementing capon beamforming on a GPU for real-time cardiac ultrasound imaging.
    Åsen JP; Buskenes JI; Colombo Nilsen CI; Austeng A; Holm S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):76-85. PubMed ID: 24402897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous fluorescence imaging of protease expression and vascularity during murine colonoscopy for colonic lesion characterization.
    Funovics MA; Alencar H; Montet X; Weissleder R; Mahmood U
    Gastrointest Endosc; 2006 Oct; 64(4):589-97. PubMed ID: 16996355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mumford and Shah functional: VLSI analysis and implementation.
    Martina M; Masera G
    IEEE Trans Pattern Anal Mach Intell; 2006 Mar; 28(3):487-94. PubMed ID: 16526435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hyperspectral fluorescence system for 3D in vivo optical imaging.
    Zavattini G; Vecchi S; Mitchell G; Weisser U; Leahy RM; Pichler BJ; Smith DJ; Cherry SR
    Phys Med Biol; 2006 Apr; 51(8):2029-43. PubMed ID: 16585843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo near-infrared autofluorescence imaging of pigmented skin lesions: methods, technical improvements and preliminary clinical results.
    Wang S; Zhao J; Lui H; He Q; Zeng H
    Skin Res Technol; 2013 Feb; 19(1):20-6. PubMed ID: 22724585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of high-sensitivity near-infrared fluorescence imaging device for early cancer detection.
    Chen Y; Intes X; Chance B
    Biomed Instrum Technol; 2005; 39(1):75-85. PubMed ID: 15742853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosensors technologies: acousto-optic tunable filter-based hyperspectral and polarization imagers for fluorescence and spectroscopic imaging.
    Gupta N
    Methods Mol Biol; 2009; 503():293-305. PubMed ID: 19151948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hardware-assisted visibility sorting for unstructured volume rendering.
    Callahan SP; Ikits M; Comba JL; Silva CT
    IEEE Trans Vis Comput Graph; 2005; 11(3):285-95. PubMed ID: 15868828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared imaging of water in human hair.
    Egawa M; Hagihara M; Yanai M
    Skin Res Technol; 2013 Feb; 19(1):35-41. PubMed ID: 22672448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of facial sebum distribution using a digital fluorescent imaging system.
    Han B; Jung B; Nelson JS; Choi EH
    J Biomed Opt; 2007; 12(1):014006. PubMed ID: 17343481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection.
    Martin ME; Wabuyele MB; Chen K; Kasili P; Panjehpour M; Phan M; Overholt B; Cunningham G; Wilson D; Denovo RC; Vo-Dinh T
    Ann Biomed Eng; 2006 Jun; 34(6):1061-8. PubMed ID: 16783661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flash lamp-excited time-resolved fluorescence microscope suppresses autofluorescence in water concentrates to deliver an 11-fold increase in signal-to-noise ratio.
    Connally R; Veal D; Piper J
    J Biomed Opt; 2004; 9(4):725-34. PubMed ID: 15250759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental fluorescence tomography of tissues with noncontact measurements.
    Schulz RB; Ripoll J; Ntziachristos V
    IEEE Trans Med Imaging; 2004 Apr; 23(4):492-500. PubMed ID: 15084074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.