These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 25227024)
1. Interactive knee cartilage extraction using efficient segmentation software: data from the osteoarthritis initiative. Gan HS; Tan TS; Wong LX; Tham WK; Sayuti KA; Abdul Karim AH; bin Abdul Kadir MR Biomed Mater Eng; 2014; 24(6):3145-57. PubMed ID: 25227024 [TBL] [Abstract][Full Text] [Related]
2. Automatic segmentation of the articular cartilage in knee MRI using a hierarchical multi-class classification scheme. Folkesson J; Dam E; Olsen OF; Pettersen P; Christiansen C Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):327-34. PubMed ID: 16685862 [TBL] [Abstract][Full Text] [Related]
3. Knee cartilage: efficient and reproducible segmentation on high-spatial-resolution MR images with the semiautomated graph-cut algorithm method. Shim H; Chang S; Tao C; Wang JH; Kwoh CK; Bae KT Radiology; 2009 May; 251(2):548-56. PubMed ID: 19401579 [TBL] [Abstract][Full Text] [Related]
4. Unsupervised segmentation and quantification of anatomical knee features: data from the Osteoarthritis Initiative. Tamez-Peña JG; Farber J; González PC; Schreyer E; Schneider E; Totterman S IEEE Trans Biomed Eng; 2012 Apr; 59(4):1177-86. PubMed ID: 22318477 [TBL] [Abstract][Full Text] [Related]
5. Automated techniques for visualization and mapping of articular cartilage in MR images of the osteoarthritic knee: a base technique for the assessment of microdamage and submicro damage. Cashman PM; Kitney RI; Gariba MA; Carter ME IEEE Trans Nanobioscience; 2002 Mar; 1(1):42-51. PubMed ID: 16689221 [TBL] [Abstract][Full Text] [Related]
6. Robust interactive image segmentation using convex active contours. Nguyen TN; Cai J; Zhang J; Zheng J IEEE Trans Image Process; 2012 Aug; 21(8):3734-43. PubMed ID: 22453637 [TBL] [Abstract][Full Text] [Related]
7. Investigation of random walks knee cartilage segmentation model using inter-observer reproducibility: Data from the osteoarthritis initiative. Hong-Seng G; Sayuti KA; Karim AH Biomed Mater Eng; 2017; 28(2):75-85. PubMed ID: 28372262 [TBL] [Abstract][Full Text] [Related]
8. Segmenting articular cartilage automatically using a voxel classification approach. Folkesson J; Dam EB; Olsen OF; Pettersen PC; Christiansen C IEEE Trans Med Imaging; 2007 Jan; 26(1):106-15. PubMed ID: 17243589 [TBL] [Abstract][Full Text] [Related]
9. Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies. Zhang K; Lu W; Marziliano P Magn Reson Imaging; 2013 Dec; 31(10):1731-43. PubMed ID: 23867282 [TBL] [Abstract][Full Text] [Related]
10. Computer-aided diagnosis of early knee osteoarthritis based on MRI T2 mapping. Wu Y; Yang R; Jia S; Li Z; Zhou Z; Lou T Biomed Mater Eng; 2014; 24(6):3379-88. PubMed ID: 25227048 [TBL] [Abstract][Full Text] [Related]
11. Random walks for image segmentation. Grady L IEEE Trans Pattern Anal Mach Intell; 2006 Nov; 28(11):1768-83. PubMed ID: 17063682 [TBL] [Abstract][Full Text] [Related]
12. Automatic segmentation of articular cartilage in magnetic resonance images of the knee. Fripp J; Crozier S; Warfield SK; Ourselin S Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):186-94. PubMed ID: 18044568 [TBL] [Abstract][Full Text] [Related]
13. Assessment of synovitis in the osteoarthritic knee: Comparison between manual segmentation, semiautomated segmentation, and semiquantitative assessment using contrast-enhanced fat-suppressed T1-weighted MRI. Fotinos-Hoyer AK; Guermazi A; Jara H; Eckstein F; Ozonoff A; Khard H; Norbash A; Bohndorf K; Roemer FW Magn Reson Med; 2010 Aug; 64(2):604-9. PubMed ID: 20665803 [TBL] [Abstract][Full Text] [Related]
14. SketchSnakes: sketch-line initialized Snakes for efficient interactive medical image segmentation. McInerney T Comput Med Imaging Graph; 2008 Jul; 32(5):331-52. PubMed ID: 18403179 [TBL] [Abstract][Full Text] [Related]
15. A quantitative comparison between manual segmentation and threshold-based segmentation of CLSM recorded images. Anderson JR; Barrett SF Biomed Sci Instrum; 2007; 43():290-5. PubMed ID: 17487096 [TBL] [Abstract][Full Text] [Related]
16. A technique for visualization and mapping of local cartilage thickness changes in MR images of osteoarthritic knee. Ge Q; Cheng Y; Bi K; Guo C; Bai J; Tamura S Eur J Radiol; 2012 Nov; 81(11):3404-11. PubMed ID: 22571929 [TBL] [Abstract][Full Text] [Related]
17. Diagnosis of osteoarthritis and prognosis of tibial cartilage loss by quantification of tibia trabecular bone from MRI. Marques J; Genant HK; Lillholm M; Dam EB Magn Reson Med; 2013 Aug; 70(2):568-75. PubMed ID: 22941674 [TBL] [Abstract][Full Text] [Related]
18. Case study: an evaluation of user-assisted hierarchical watershed segmentation. Cates JE; Whitaker RT; Jones GM Med Image Anal; 2005 Dec; 9(6):566-78. PubMed ID: 15919233 [TBL] [Abstract][Full Text] [Related]
19. Random walks for interactive organ segmentation in two and three dimensions: implementation and validation. Grady L; Schiwietz T; Aharon S; Westermann R Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):773-80. PubMed ID: 16686030 [TBL] [Abstract][Full Text] [Related]
20. Interactive image segmentation using Dirichlet process multiple-view learning. Ding L; Yilmaz A; Yan R IEEE Trans Image Process; 2012 Apr; 21(4):2119-29. PubMed ID: 22203708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]