These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 25227048)
1. Computer-aided diagnosis of early knee osteoarthritis based on MRI T2 mapping. Wu Y; Yang R; Jia S; Li Z; Zhou Z; Lou T Biomed Mater Eng; 2014; 24(6):3379-88. PubMed ID: 25227048 [TBL] [Abstract][Full Text] [Related]
2. Automated techniques for visualization and mapping of articular cartilage in MR images of the osteoarthritic knee: a base technique for the assessment of microdamage and submicro damage. Cashman PM; Kitney RI; Gariba MA; Carter ME IEEE Trans Nanobioscience; 2002 Mar; 1(1):42-51. PubMed ID: 16689221 [TBL] [Abstract][Full Text] [Related]
3. Diagnosis of osteoarthritis and prognosis of tibial cartilage loss by quantification of tibia trabecular bone from MRI. Marques J; Genant HK; Lillholm M; Dam EB Magn Reson Med; 2013 Aug; 70(2):568-75. PubMed ID: 22941674 [TBL] [Abstract][Full Text] [Related]
4. Automatic segmentation of the articular cartilage in knee MRI using a hierarchical multi-class classification scheme. Folkesson J; Dam E; Olsen OF; Pettersen P; Christiansen C Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):327-34. PubMed ID: 16685862 [TBL] [Abstract][Full Text] [Related]
5. Interactive knee cartilage extraction using efficient segmentation software: data from the osteoarthritis initiative. Gan HS; Tan TS; Wong LX; Tham WK; Sayuti KA; Abdul Karim AH; bin Abdul Kadir MR Biomed Mater Eng; 2014; 24(6):3145-57. PubMed ID: 25227024 [TBL] [Abstract][Full Text] [Related]
6. A technique for visualization and mapping of local cartilage thickness changes in MR images of osteoarthritic knee. Ge Q; Cheng Y; Bi K; Guo C; Bai J; Tamura S Eur J Radiol; 2012 Nov; 81(11):3404-11. PubMed ID: 22571929 [TBL] [Abstract][Full Text] [Related]
7. Knee cartilage: efficient and reproducible segmentation on high-spatial-resolution MR images with the semiautomated graph-cut algorithm method. Shim H; Chang S; Tao C; Wang JH; Kwoh CK; Bae KT Radiology; 2009 May; 251(2):548-56. PubMed ID: 19401579 [TBL] [Abstract][Full Text] [Related]
8. A computer-aided diagnostic system to discriminate SPIO-enhanced magnetic resonance hepatocellular carcinoma by a neural network classifier. Guo D; Qiu T; Bian J; Kang W; Zhang L Comput Med Imaging Graph; 2009 Dec; 33(8):588-92. PubMed ID: 19656655 [TBL] [Abstract][Full Text] [Related]
9. Longitudinal analysis of MRI T2 knee cartilage laminar organization in a subset of patients from the osteoarthritis initiative: a texture approach. Carballido-Gamio J; Joseph GB; Lynch JA; Link TM; Majumdar S Magn Reson Med; 2011 Apr; 65(4):1184-94. PubMed ID: 21413082 [TBL] [Abstract][Full Text] [Related]
10. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. Regatte RR; Akella SV; Lonner JH; Kneeland JB; Reddy R J Magn Reson Imaging; 2006 Apr; 23(4):547-53. PubMed ID: 16523468 [TBL] [Abstract][Full Text] [Related]
11. Unsupervised segmentation and quantification of anatomical knee features: data from the Osteoarthritis Initiative. Tamez-Peña JG; Farber J; González PC; Schreyer E; Schneider E; Totterman S IEEE Trans Biomed Eng; 2012 Apr; 59(4):1177-86. PubMed ID: 22318477 [TBL] [Abstract][Full Text] [Related]
13. Texture analysis of bone marrow in knee MRI for classification of subjects with bone marrow lesion - data from the Osteoarthritis Initiative. Chuah TK; Van Reeth E; Sheah K; Poh CL Magn Reson Imaging; 2013 Jul; 31(6):930-8. PubMed ID: 23434436 [TBL] [Abstract][Full Text] [Related]
14. Investigation of regional influence of magic-angle effect on t2 in human articular cartilage with osteoarthritis at 3 T. Wang L; Regatte RR Acad Radiol; 2015 Jan; 22(1):87-92. PubMed ID: 25481517 [TBL] [Abstract][Full Text] [Related]
15. Use of quantitative MRI for the detection of progressive cartilage degeneration in a mini-pig model of osteoarthritis caused by anterior cruciate ligament transection. Wei B; Zong M; Yan C; Mao F; Guo Y; Yao Q; Xu Y; Wang L J Magn Reson Imaging; 2015 Oct; 42(4):1032-8. PubMed ID: 25656460 [TBL] [Abstract][Full Text] [Related]
16. Automated detection of prostatic adenocarcinoma from high-resolution ex vivo MRI. Madabhushi A; Feldman MD; Metaxas DN; Tomaszeweski J; Chute D IEEE Trans Med Imaging; 2005 Dec; 24(12):1611-25. PubMed ID: 16350920 [TBL] [Abstract][Full Text] [Related]
17. Comparison of PD BLADE with fat saturation (FS), PD FS and T2 3D DESS with water excitation (WE) in detecting articular knee cartilage defects. Lavdas E; Topalzikis T; Mavroidis P; Kyriakis I; Roka V; Kostopoulos S; Glotsos D; Zilidis C; Stathakis S; Tsagkalis A; Papanikolaou N; Batsikas G; Arvanitis DL; Vassiou K Magn Reson Imaging; 2013 Oct; 31(8):1255-62. PubMed ID: 23876261 [TBL] [Abstract][Full Text] [Related]
18. T2 relaxation time mapping of proximal tibiofibular cartilage by 3-tesla magnetic resonance imaging. Kwack KS; Min BH; Cho JH; Kim JM; Yoon SH; Kim SY Acta Radiol; 2009 Nov; 50(9):1049-56. PubMed ID: 19863416 [TBL] [Abstract][Full Text] [Related]
19. Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifier. Chan I; Wells W; Mulkern RV; Haker S; Zhang J; Zou KH; Maier SE; Tempany CM Med Phys; 2003 Sep; 30(9):2390-8. PubMed ID: 14528961 [TBL] [Abstract][Full Text] [Related]
20. [Clinical application of T2*GRE multiple echo sequence on articular cartilage disease in the knee]. Lin ZC; Zhai L; Chne YP; Zhang XL Nan Fang Yi Ke Da Xue Xue Bao; 2011 Jun; 31(6):1095-100. PubMed ID: 21690079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]