These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25227064)

  • 1. Technological solution for determining gait parameters using pressure sensors: a case study of multiple sclerosis patients.
    Viqueira Villarejo M; Maeso García J; García Zapirain B; Méndez Zorrilla A
    Biomed Mater Eng; 2014; 24(6):3511-22. PubMed ID: 25227064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait assessment in Parkinson's disease: toward an ambulatory system for long-term monitoring.
    Salarian A; Russmann H; Vingerhoets FJ; Dehollain C; Blanc Y; Burkhard PR; Aminian K
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1434-43. PubMed ID: 15311830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait and jogging parameters in people with minimally impaired multiple sclerosis.
    Kalron A; Dvir Z; Givon U; Baransi H; Achiron A
    Gait Posture; 2014; 39(1):297-302. PubMed ID: 23972511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring gait in multiple sclerosis with novel wearable motion sensors.
    Moon Y; McGinnis RS; Seagers K; Motl RW; Sheth N; Wright JA; Ghaffari R; Sosnoff JJ
    PLoS One; 2017; 12(2):e0171346. PubMed ID: 28178288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Footfall placement variability and falls in multiple sclerosis.
    Socie MJ; Sandroff BM; Pula JH; Hsiao-Wecksler ET; Motl RW; Sosnoff JJ
    Ann Biomed Eng; 2013 Aug; 41(8):1740-7. PubMed ID: 23132152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of gait segmentation methods for wearable foot pressure sensors.
    Crea S; De Rossi SM; Donati M; Reberšek P; Novak D; Vitiello N; Lenzi T; Podobnik J; Munih M; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5018-21. PubMed ID: 23367055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing walking activity in people with stroke.
    Fulk GD; Lopez-Meyer P; Sazonov ES
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5211-4. PubMed ID: 22255512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Mobile Kalman-Filter Based Solution for the Real-Time Estimation of Spatio-Temporal Gait Parameters.
    Ferrari A; Ginis P; Hardegger M; Casamassima F; Rocchi L; Chiari L
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):764-73. PubMed ID: 26259246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shoe-integrated sensors in physical rehabilitation.
    Viqueira Villarejo M; García Zapirain B; Méndez Zorrilla A
    Biomed Mater Eng; 2014; 24(6):3523-8. PubMed ID: 25227065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of measuring human gait.
    Hodgins D
    Med Device Technol; 2008 Sep; 19(5):42, 44-7. PubMed ID: 18947150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wireless prototype based on pressure and bending sensors for measuring gait [corrected] quality.
    Grenez F; Viqueira Villarejo M; García Zapirain B; Méndez Zorrilla A
    Sensors (Basel); 2013 Jul; 13(8):9679-703. PubMed ID: 23899935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic classification of pathological gait patterns using ground reaction forces and machine learning algorithms.
    Alaqtash M; Sarkodie-Gyan T; Yu H; Fuentes O; Brower R; Abdelgawad A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():453-7. PubMed ID: 22254346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory versus daily life gait characteristics in patients with multiple sclerosis, Parkinson's disease, and matched controls.
    Shah VV; McNames J; Mancini M; Carlson-Kuhta P; Spain RI; Nutt JG; El-Gohary M; Curtze C; Horak FB
    J Neuroeng Rehabil; 2020 Dec; 17(1):159. PubMed ID: 33261625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait analysis in multiple sclerosis: characterization of temporal-spatial parameters using GAITRite functional ambulation system.
    Givon U; Zeilig G; Achiron A
    Gait Posture; 2009 Jan; 29(1):138-42. PubMed ID: 18951800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting freezing-of-gait during unscripted and unconstrained activity.
    Cole BT; Roy SH; Nawab SH
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5649-52. PubMed ID: 22255621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic detection of freezing of gait events in patients with Parkinson's disease.
    Tripoliti EE; Tzallas AT; Tsipouras MG; Rigas G; Bougia P; Leontiou M; Konitsiotis S; Chondrogiorgi M; Tsouli S; Fotiadis DI
    Comput Methods Programs Biomed; 2013 Apr; 110(1):12-26. PubMed ID: 23195495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validity of the dynamic gait index in people with multiple sclerosis.
    Forsberg A; Andreasson M; Nilsagård YE
    Phys Ther; 2013 Oct; 93(10):1369-76. PubMed ID: 23641026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the feasibility and acceptability of sensor monitoring of gait and falls in the homes of persons with multiple sclerosis.
    Newland P; Wagner JM; Salter A; Thomas FP; Skubic M; Rantz M
    Gait Posture; 2016 Sep; 49():277-282. PubMed ID: 27474948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable inertial sensors provide reliable biomarkers of disease severity in multiple sclerosis: A systematic review and meta-analysis.
    Vienne-Jumeau A; Quijoux F; Vidal PP; Ricard D
    Ann Phys Rehabil Med; 2020 Mar; 63(2):138-147. PubMed ID: 31421274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of walking features from foot inertial sensing.
    Sabatini AM; Martelloni C; Scapellato S; Cavallo F
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):486-94. PubMed ID: 15759579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.