BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 25227544)

  • 21. Wheelchair backs that support the spinal curves: Assessing postural and functional changes.
    Presperin Pedersen J; Smith C; Dahlin M; Henry M; Jones J; McKenzie K; Sevigny M; Yingling L
    J Spinal Cord Med; 2022 Mar; 45(2):194-203. PubMed ID: 32406808
    [No Abstract]   [Full Text] [Related]  

  • 22. Comparison of activities of daily living (ADLs) in two different one arm drive wheelchairs: a study of individuals/participants with hemiplegia.
    Mandy A; Walton C; Michaelis J
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):108-12. PubMed ID: 24131370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wrist kinematic characterization of wheelchair propulsion in various seating positions: implication to wrist pain.
    Wei SH; Huang S; Jiang CJ; Chiu JC
    Clin Biomech (Bristol, Avon); 2003 Jul; 18(6):S46-52. PubMed ID: 12828914
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wheelchair configuration and postural alignment in persons with spinal cord injury.
    Hastings JD; Fanucchi ER; Burns SP
    Arch Phys Med Rehabil; 2003 Apr; 84(4):528-34. PubMed ID: 12690591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of wheelchair seat height on neck and shoulder range of motion during functional task performance.
    Sabari J; Shea M; Chen L; Laurenceau A; Leung E
    Assist Technol; 2016; 28(3):183-9. PubMed ID: 26853925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of system tilt and seat-to-backrest angles on load sustained by shoulder during wheelchair propulsion.
    Desroches G; Aissaoui R; Bourbonnais D
    J Rehabil Res Dev; 2006; 43(7):871-82. PubMed ID: 17436173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of whole-body vibration during manual wheelchair propulsion: a comparison of seat cushions and back supports for individuals without a disability.
    DiGiovine CP; Cooper RA; Wolf E; Fitzgerald SG; Boninger ML
    Assist Technol; 2003; 15(2):129-44. PubMed ID: 15137730
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of seat height on manual wheelchair foot propulsion, a repeated-measures crossover study: part 2 - wheeling backward on a soft surface.
    Heinrichs ND; Kirby RL; Smith C; Russell KFJ; Theriault CJ; Doucette SP
    Disabil Rehabil Assist Technol; 2022 Apr; 17(3):325-330. PubMed ID: 32594783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring the lived experience of people using ultralight wheelchairs with on-the-fly adjustable seating function.
    Mattie J; Aitken-Mundhenk L; Bicknell L; Mortenson WB; Borisoff J
    Disabil Rehabil Assist Technol; 2020 Nov; 15(8):878-884. PubMed ID: 31208260
    [No Abstract]   [Full Text] [Related]  

  • 30. Displacement between the seating surface and hybrid test dummy during transitions with a variable configuration wheelchair: a technical note.
    Cooper RA; Dvorznak MJ; Rentschler AJ; Boninger ML
    J Rehabil Res Dev; 2000; 37(3):297-303. PubMed ID: 10917261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Orthotic-Style Off-Loading Wheelchair Seat Cushion Reduces Interface Pressure Under Ischial Tuberosities and Sacrococcygeal Regions.
    Crane B; Wininger M; Call E
    Arch Phys Med Rehabil; 2016 Nov; 97(11):1872-1879. PubMed ID: 27132160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A theoretical analysis of the influence of wheelchair seat position on upper extremity demand.
    Slowik JS; Neptune RR
    Clin Biomech (Bristol, Avon); 2013 Apr; 28(4):378-85. PubMed ID: 23608478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Seat interface pressures of individuals with paraplegia: influence of dynamic wheelchair locomotion compared with static seated measurements.
    Kernozek TW; Lewin JE
    Arch Phys Med Rehabil; 1998 Mar; 79(3):313-6. PubMed ID: 9523784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Daily Physical Activity Level on Manual Wheelchair Propulsion Technique in Full-Time Manual Wheelchair Users During Steady-State Treadmill Propulsion.
    Dysterheft J; Rice I; Learmonth Y; Kinnett-Hopkins D; Motl R
    Arch Phys Med Rehabil; 2017 Jul; 98(7):1374-1381. PubMed ID: 28161318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wheelchair appropriateness in patients with spinal cord injury: a Turkish experience.
    Ekiz T; Ozbudak Demir S; Ozgirgin N
    Spinal Cord; 2014 Dec; 52(12):901-4. PubMed ID: 25112966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wheelchair propulsion kinematics in beginners and expert users: influence of wheelchair settings.
    Gorce P; Louis N
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):7-15. PubMed ID: 21840091
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A randomized controlled trial of a modified wheelchair arm-support to reduce shoulder pain in stroke patients.
    Pan R; Zhou M; Cai H; Guo Y; Zhan L; Li M; Yang Z; Zhu L; Zhan J; Chen H
    Clin Rehabil; 2018 Jan; 32(1):37-47. PubMed ID: 28629270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Manufacturing custom-contoured wheelchair seating: A state-of-the-art review.
    Nace S; Tiernan J; NĂ­ Annaidh A
    Prosthet Orthot Int; 2019 Aug; 43(4):382-395. PubMed ID: 30895870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design, testing and evaluation of angle-adjustable backrest hardware.
    Hong EK; Cooper RA; Pearlman JL; Hargroder T
    Disabil Rehabil Assist Technol; 2016; 11(4):325-32. PubMed ID: 24999560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Randomized Clinical Trial of Wheeled Mobility for Pressure Injury Prevention and Better Function.
    Brienza DM; Karg PE; Bertolet M; Schmeler M; Poojary-Mazzotta P; Vlachos H; Wilkinson D
    J Am Geriatr Soc; 2018 Sep; 66(9):1752-1759. PubMed ID: 30094810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.