BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25227613)

  • 21. Dynamic nuclear reorganization during genome remodeling of Tetrahymena.
    Chalker DL
    Biochim Biophys Acta; 2008 Nov; 1783(11):2130-6. PubMed ID: 18706458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of the germline genome of
    Hamilton EP; Kapusta A; Huvos PE; Bidwell SL; Zafar N; Tang H; Hadjithomas M; Krishnakumar V; Badger JH; Caler EV; Russ C; Zeng Q; Fan L; Levin JZ; Shea T; Young SK; Hegarty R; Daza R; Gujja S; Wortman JR; Birren BW; Nusbaum C; Thomas J; Carey CM; Pritham EJ; Feschotte C; Noto T; Mochizuki K; Papazyan R; Taverna SD; Dear PH; Cassidy-Hanley DM; Xiong J; Miao W; Orias E; Coyne RS
    Elife; 2016 Nov; 5():. PubMed ID: 27892853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drivers of Mating Type Composition in Tetrahymena thermophila.
    Wang G; Chen K; Zhang J; Deng S; Xiong J; He X; Fu Y; Miao W
    Genome Biol Evol; 2020 Dec; 12(12):2328-2343. PubMed ID: 32946549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The CNA1 histone of the ciliate Tetrahymena thermophila is essential for chromosome segregation in the germline micronucleus.
    Cervantes MD; Xi X; Vermaak D; Yao MC; Malik HS
    Mol Biol Cell; 2006 Jan; 17(1):485-97. PubMed ID: 16251352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A mutational analysis of conjugation in Tetrahymena thermophila. 1. Phenotypes affecting early development: meiosis to nuclear selection.
    Cole ES; Cassidy-Hanley D; Hemish J; Tuan J; Bruns PJ
    Dev Biol; 1997 Sep; 189(2):215-32. PubMed ID: 9299115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A developmentally regulated gene, ASI2, is required for endocycling in the macronuclear anlagen of Tetrahymena.
    Yin L; Gater ST; Karrer KM
    Eukaryot Cell; 2010 Sep; 9(9):1343-53. PubMed ID: 20656911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploration of Genetic Variations through Single-cell Whole-genome Sequencing in the Model Ciliate Tetrahymena thermophila.
    Chen K; Wang G; Xiong J; Jiang C; Miao W
    J Eukaryot Microbiol; 2019 Nov; 66(6):954-965. PubMed ID: 31188517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Autonomously replicating macronuclear DNA pieces are the physical basis of genetic coassortment groups in Tetrahymena thermophila.
    Wong L; Klionsky L; Wickert S; Merriam V; Orias E; Hamilton EP
    Genetics; 2000 Jul; 155(3):1119-25. PubMed ID: 10880474
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manipulating ciliary protein-encoding genes in Tetrahymena thermophila.
    Dave D; Wloga D; Gaertig J
    Methods Cell Biol; 2009; 93():1-20. PubMed ID: 20409809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nuclear localization signal targeting to macronucleus and micronucleus in binucleated ciliate Tetrahymena thermophila.
    Iwamoto M; Mori C; Osakada H; Koujin T; Hiraoka Y; Haraguchi T
    Genes Cells; 2018 Jul; 23(7):568-579. PubMed ID: 29882620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elimination of foreign DNA during somatic differentiation in Tetrahymena thermophila shows position effect and is dosage dependent.
    Liu Y; Song X; Gorovsky MA; Karrer KM
    Eukaryot Cell; 2005 Feb; 4(2):421-31. PubMed ID: 15701804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of class III phosphatidylinositol 3-kinase during programmed nuclear death of Tetrahymena thermophila.
    Akematsu T; Fukuda Y; Attiq R; Pearlman RE
    Autophagy; 2014 Feb; 10(2):209-25. PubMed ID: 24280724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sex, amitosis, and evolvability in the ciliate Tetrahymena thermophila.
    Tarkington J; Zhang H; Azevedo RBR; Zufall RA
    Evolution; 2023 Jan; 77(1):36-48. PubMed ID: 36622280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two distinct repeat sequences of Nup98 nucleoporins characterize dual nuclei in the binucleated ciliate tetrahymena.
    Iwamoto M; Mori C; Kojidani T; Bunai F; Hori T; Fukagawa T; Hiraoka Y; Haraguchi T
    Curr Biol; 2009 May; 19(10):843-7. PubMed ID: 19375312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of the Cytosolic Heat Shock Protein 70 Ssa5 in the Ciliate Protozoan Tetrahymena thermophila.
    Fukuda Y; Akematsu T; Attiq R; Tada C; Nakai Y; Pearlman RE
    J Eukaryot Microbiol; 2015; 62(4):481-93. PubMed ID: 25586926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High frequency intragenic recombination during macronuclear development in Tetrahymena thermophila restores the wild-type SerH1 gene.
    Deak JC; Doerder FP
    Genetics; 1998 Mar; 148(3):1109-15. PubMed ID: 9539428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel family of mobile genetic elements is limited to the germline genome in Tetrahymena thermophila.
    Wuitschick JD; Gershan JA; Lochowicz AJ; Li S; Karrer KM
    Nucleic Acids Res; 2002 Jun; 30(11):2524-37. PubMed ID: 12034842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tetrahymena micronuclear genome mapping. a high-resolution meiotic map of chromosome 1l.
    Wickert S; Orias E
    Genetics; 2000 Mar; 154(3):1141-53. PubMed ID: 10757759
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Zygotic expression of the double-stranded RNA binding motif protein Drb2p is required for DNA elimination in the ciliate Tetrahymena thermophila.
    Motl JA; Chalker DL
    Eukaryot Cell; 2011 Dec; 10(12):1648-59. PubMed ID: 22021239
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The conjugation-specific Die5 protein is required for development of the somatic nucleus in both Paramecium and Tetrahymena.
    Matsuda A; Shieh AW; Chalker DL; Forney JD
    Eukaryot Cell; 2010 Jul; 9(7):1087-99. PubMed ID: 20495055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.