BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 25227702)

  • 1. The role of the immunosuppressive microenvironment in acute myeloid leukemia development and treatment.
    Isidori A; Salvestrini V; Ciciarello M; Loscocco F; Visani G; Parisi S; Lecciso M; Ocadlikova D; Rossi L; Gabucci E; Clissa C; Curti A
    Expert Rev Hematol; 2014 Dec; 7(6):807-18. PubMed ID: 25227702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia.
    Anguille S; Van Tendeloo VF; Berneman ZN
    Leukemia; 2012 Oct; 26(10):2186-96. PubMed ID: 22652755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The angioregulatory cytokine network in human acute myeloid leukemia - from leukemogenesis via remission induction to stem cell transplantation.
    Reikvam H; Hatfield KJ; Fredly H; Nepstad I; Mosevoll KA; Bruserud Ø
    Eur Cytokine Netw; 2012; 23(4):140-53. PubMed ID: 23328436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunotherapeutic Concepts to Target Acute Myeloid Leukemia: Focusing on the Role of Monoclonal Antibodies, Hypomethylating Agents and the Leukemic Microenvironment.
    Gbolahan OB; Zeidan AM; Stahl M; Abu Zaid M; Farag S; Paczesny S; Konig H
    Int J Mol Sci; 2017 Jul; 18(8):. PubMed ID: 28758974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute myeloid leukemia and novel biological treatments: monoclonal antibodies and cell-based gene-modified immune effectors.
    Tettamanti S; Magnani CF; Biondi A; Biagi E
    Immunol Lett; 2013; 155(1-2):43-6. PubMed ID: 24076117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural killer cell immune escape in acute myeloid leukemia.
    Lion E; Willemen Y; Berneman ZN; Van Tendeloo VF; Smits EL
    Leukemia; 2012 Sep; 26(9):2019-26. PubMed ID: 22446501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting the acute myeloid leukemic stem cell compartment by enhancing tumor cell-based vaccines.
    Ruben JM; Visser LL; Bontkes HJ; Westers TM; Ossenkoppele GJ; de Gruijl TD; van de Loosdrecht AA
    Immunotherapy; 2013 Aug; 5(8):859-68. PubMed ID: 23902555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunotherapy in acute myeloid leukemia.
    Arpinati M; Curti A
    Immunotherapy; 2014; 6(1):95-106. PubMed ID: 24341888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel nonradioactive CFDA assay to monitor the cellular immune response in myeloid leukemia.
    Yang T; Chen ZZ; Kolb HJ; Buhmann R
    Immunobiology; 2013 Apr; 218(4):548-53. PubMed ID: 22883564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunotherapeutic strategies for relapse control in acute myeloid leukemia.
    Martner A; Thorén FB; Aurelius J; Hellstrand K
    Blood Rev; 2013 Sep; 27(5):209-16. PubMed ID: 23871358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting epigenetically mediated changes: Acute myeloid leukemia, leukemia stem cells and the bone marrow microenvironment.
    Kogan AA; Lapidus RG; Baer MR; Rassool FV
    Adv Cancer Res; 2019; 141():213-253. PubMed ID: 30691684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catch me if you can: how AML and its niche escape immunotherapy.
    Tettamanti S; Pievani A; Biondi A; Dotti G; Serafini M
    Leukemia; 2022 Jan; 36(1):13-22. PubMed ID: 34302116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment.
    Mussai F; De Santo C; Abu-Dayyeh I; Booth S; Quek L; McEwen-Smith RM; Qureshi A; Dazzi F; Vyas P; Cerundolo V
    Blood; 2013 Aug; 122(5):749-58. PubMed ID: 23733335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The imbalanced profile and clinical significance of T helper associated cytokines in bone marrow microenvironment of the patients with acute myeloid leukemia.
    Sun YX; Kong HL; Liu CF; Yu S; Tian T; Ma DX; Ji CY
    Hum Immunol; 2014 Feb; 75(2):113-8. PubMed ID: 24269703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. c-Myc plays part in drug resistance mediated by bone marrow stromal cells in acute myeloid leukemia.
    Xia B; Tian C; Guo S; Zhang L; Zhao D; Qu F; Zhao W; Wang Y; Wu X; Da W; Wei S; Zhang Y
    Leuk Res; 2015 Jan; 39(1):92-9. PubMed ID: 25443862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immune-Based Therapies in Acute Leukemia.
    Witkowski MT; Lasry A; Carroll WL; Aifantis I
    Trends Cancer; 2019 Oct; 5(10):604-618. PubMed ID: 31706508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide vaccines for patients with acute myeloid leukemia.
    Schmitt M; Casalegno-Garduño R; Xu X; Schmitt A
    Expert Rev Vaccines; 2009 Oct; 8(10):1415-25. PubMed ID: 19803762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bone marrow microenvironment is a critical player in the NK cell response against acute myeloid leukaemia in vitro.
    Vasold J; Wagner M; Drolle H; Deniffel C; Kütt A; Oostendorp R; Sironi S; Rieger C; Fiegl M
    Leuk Res; 2015 Feb; 39(2):257-62. PubMed ID: 25542695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A potential area of use for immune checkpoint inhibitors: Targeting bone marrow microenvironment in acute myeloid leukemia.
    Aru B; Pehlivanoğlu C; Dal Z; Dereli-Çalışkan NN; Gürlü E; Yanıkkaya-Demirel G
    Front Immunol; 2023; 14():1108200. PubMed ID: 36742324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunotherapy for acute myeloid leukemia (AML): a potent alternative therapy.
    Acheampong DO; Adokoh CK; Asante DB; Asiamah EA; Barnie PA; Bonsu DOM; Kyei F
    Biomed Pharmacother; 2018 Jan; 97():225-232. PubMed ID: 29091870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.