BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 25227702)

  • 61. Enhancement of the anti-tumor efficacy of a GM-CSF-secreting tumor cell immunotherapy in preclinical models by cytosine arabinoside.
    Lin JM; Li B; Rimmer E; VanRoey M; Jooss K
    Exp Hematol; 2008 Mar; 36(3):319-28. PubMed ID: 18279719
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Identification of the immunosuppressive effect of γδ T cells correlated to bone morphogenetic protein 2 in acute myeloid leukemia.
    Liang S; Dong T; Yue K; Gao H; Wu N; Liu R; Chang Y; Hao L; Hu L; Zhao T; Jiang Q; Huang XJ; Liu J
    Front Immunol; 2022; 13():1009709. PubMed ID: 36325350
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The role of various interleukins in acute myeloid leukemia.
    Kaser EC; Zhao L; D'mello KP; Zhu Z; Xiao H; Wakefield MR; Bai Q; Fang Y
    Med Oncol; 2021 Apr; 38(5):55. PubMed ID: 33835290
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Circulating cells and exosomes in acute myelogenous leukemia and their role in disease progression and survival.
    Miyamoto KN; Bonatto D
    Clin Immunol; 2020 Aug; 217():108489. PubMed ID: 32492479
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Current strategies in immunotherapy for acute myeloid leukemia.
    Lichtenegger FS; Schnorfeil FM; Hiddemann W; Subklewe M
    Immunotherapy; 2013 Jan; 5(1):63-78. PubMed ID: 23256799
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The BN acute myelocytic leukemia (BNML) (a rat model for studying human acute myelocytic leukemia (AML)).
    Martens AC; Van Bekkum DW; Hagenbeek A
    Leukemia; 1990 Apr; 4(4):241-57. PubMed ID: 2195239
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Current challenges for CAR T-cell therapy of acute myeloid leukemia.
    Sauer T; Rooney CM
    Transfusion; 2019 Apr; 59(4):1171-1173. PubMed ID: 30762880
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The quality and quantity of leukemia-derived dendritic cells from patients with acute myeloid leukemia and myelodysplastic syndrome are a predictive factor for the lytic potential of dendritic cells-primed leukemia-specific T cells.
    Grabrucker C; Liepert A; Dreyig J; Kremser A; Kroell T; Freudenreich M; Schmid C; Schweiger C; Tischer J; Kolb HJ; Schmetzer H
    J Immunother; 2010 Jun; 33(5):523-37. PubMed ID: 20463595
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Utilizing exosomes as sparking clinical biomarkers and therapeutic response in acute myeloid leukemia.
    Wang W; Wu X; Zheng J; Yin R; Li Y; Wu X; Xu L; Jin Z
    Front Immunol; 2023; 14():1315453. PubMed ID: 38292478
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Poor outcome with nonmyeloablative conditioning regimen before cord blood transplantation for patients with high-risk acute myeloid leukemia compared with matched related or unrelated donor transplantation.
    Devillier R; Harbi S; Fürst S; Crocchiolo R; El-Cheikh J; Castagna L; Etienne A; Calmels B; Lemarie C; Prebet T; Granata A; Charbonnier A; Rey J; Chabannon C; Faucher C; Vey N; Blaise D
    Biol Blood Marrow Transplant; 2014 Oct; 20(10):1560-5. PubMed ID: 24933658
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A comprehensive analysis of primary acute myeloid leukemia identifies biomarkers predicting susceptibility to human allogeneic Vγ9Vδ2 T cells.
    Gundermann S; Klinker E; Kimmel B; Flierl U; Wilhelm M; Einsele H; Kunzmann V
    J Immunother; 2014; 37(6):321-30. PubMed ID: 24911793
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Early evaluation of natural killer activity in post-transplant acute myeloid leukemia patients.
    Pittari G; Fregni G; Roguet L; Garcia A; Vataire AL; Wittnebel S; Amsellem S; Chouaib S; Bourhis JH; Caignard A
    Bone Marrow Transplant; 2010 May; 45(5):862-71. PubMed ID: 19802033
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Efficient monocyte-derived dendritic cell generation in patients with acute myeloid leukemia after chemotherapy treatment: application to active immunotherapy.
    Royer PJ; Bougras G; Ebstein F; Leveque L; Tanguy-Royer S; Simon T; Juge-Morineau N; Chevallier P; Harousseau JL; Gregoire M
    Exp Hematol; 2008 Mar; 36(3):329-39. PubMed ID: 18207305
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Novel therapies in AML: reason for hope or just hype?
    Larkin K; Blum W
    Am Soc Clin Oncol Educ Book; 2014; ():e341-51. PubMed ID: 24857123
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Immunotherapies of acute myeloid leukemia: Rationale, clinical evidence and perspective.
    Wu Y; Li Y; Gao Y; Zhang P; Jing Q; Zhang Y; Jin W; Wang Y; Du J; Wu G
    Biomed Pharmacother; 2024 Feb; 171():116132. PubMed ID: 38198961
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways.
    Bakhtiyari M; Liaghat M; Aziziyan F; Shapourian H; Yahyazadeh S; Alipour M; Shahveh S; Maleki-Sheikhabadi F; Halimi H; Forghaniesfidvajani R; Zalpoor H; Nabi-Afjadi M; Pornour M
    Cell Commun Signal; 2023 Sep; 21(1):252. PubMed ID: 37735675
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Integrated functional and mass spectrometry-based flow cytometric phenotyping to describe the immune microenvironment in acute myeloid leukemia.
    Lamble AJ; Dietz M; Laderas T; McWeeney S; Lind EF
    J Immunol Methods; 2018 Feb; 453():44-52. PubMed ID: 29175391
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Targeting the Tumor Microenvironment in Acute Myeloid Leukemia: The Future of Immunotherapy and Natural Products.
    Hino C; Pham B; Park D; Yang C; Nguyen MHK; Kaur S; Reeves ME; Xu Y; Nishino K; Pu L; Kwon SM; Zhong JF; Zhang KK; Xie L; Chong EG; Chen CS; Nguyen V; Castillo DR; Cao H
    Biomedicines; 2022 Jun; 10(6):. PubMed ID: 35740430
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effective Murine Model Induction for Niche Study in Immune Cells Against Leukemia.
    Kim DY; Lee S; Kim DY; Lee JY
    Adv Exp Med Biol; 2020; 1232():415-420. PubMed ID: 31893439
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Immune evasion mechanisms in acute myeloid leukemia: A focus on immune checkpoint pathways.
    Taghiloo S; Asgarian-Omran H
    Crit Rev Oncol Hematol; 2021 Jan; 157():103164. PubMed ID: 33271388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.