BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 25227702)

  • 81. Biochemical mechanisms implemented by human acute myeloid leukemia cells to suppress host immune surveillance.
    Yasinska IM; Gonçalves Silva I; Sakhnevych S; Gibbs BF; Raap U; Fasler-Kan E; Sumbayev VV
    Cell Mol Immunol; 2018 Nov; 15(11):989-991. PubMed ID: 29872115
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Knockdown of let-7b in leukemia associated macrophages inhibit acute myeloid leukemia progression.
    Tian C; Li Y; Si J; Kang J; Chen Z; Nuermaimaiti R; Wang Y; Yu Y; Zhao Z; Wang X; Zhang Y; Zhao H; Yang H; You MJ; Zheng G; Wang L
    Hematol Oncol; 2023 Aug; 41(3):510-519. PubMed ID: 36579468
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Redirecting the Immune Microenvironment in Acute Myeloid Leukemia.
    Sendker S; Reinhardt D; Niktoreh N
    Cancers (Basel); 2021 Mar; 13(6):. PubMed ID: 33804676
    [TBL] [Abstract][Full Text] [Related]  

  • 84. What is the role of the bone marrow microenvironment in AML?
    Mulherkar N; Scadden DT
    Best Pract Res Clin Haematol; 2021 Dec; 34(4):101328. PubMed ID: 34865700
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Immunotherapy in AML: a brief review on emerging strategies.
    Moeinafshar A; Hemmati S; Rezaei N
    Clin Transl Oncol; 2021 Dec; 23(12):2431-2447. PubMed ID: 34160771
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Immunotherapeutic targeting of surfaceome heterogeneity in AML.
    Bordeleau ME; Audemard É; Métois A; Theret L; Lisi V; Farah A; Spinella JF; Chagraoui J; Moujaber O; Aubert L; Khakipoor B; Mallinger L; Boivin I; Mayotte N; Hajmirza A; Bonneil É; Béliveau F; Pfammatter S; Feghaly A; Boucher G; Gendron P; Thibault P; Barabé F; Lemieux S; Richard-Carpentier G; Hébert J; Lavallée VP; Roux PP; Sauvageau G
    Cell Rep; 2024 Jun; 43(6):114260. PubMed ID: 38838225
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Role of interleukins in acute myeloid leukemia.
    Wang Y; Tang X; Zhu Y; Yang XX; Liu B
    Leuk Lymphoma; 2023; 64(8):1400-1413. PubMed ID: 37259867
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Targeting the Immune Microenvironment in Acute Myeloid Leukemia: A Focus on T Cell Immunity.
    Lamble AJ; Lind EF
    Front Oncol; 2018; 8():213. PubMed ID: 29951373
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Microenvironment in acute myeloid leukemia: focus on senescence mechanisms, therapeutic interactions, and future directions.
    Guarnera L; Santinelli E; Galossi E; Cristiano A; Fabiani E; Falconi G; Voso MT
    Exp Hematol; 2024 Jan; 129():104118. PubMed ID: 37741607
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Immune therapy of AML.
    Molldrem J
    Cytotherapy; 2002; 4(5):437-8. PubMed ID: 12473216
    [No Abstract]   [Full Text] [Related]  

  • 91. Immunotherapy in Myeloproliferative Diseases.
    Braun LM; Zeiser R
    Cells; 2020 Jun; 9(6):. PubMed ID: 32604862
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The stimulator of interferon genes (STING) agonists for treating acute myeloid leukemia (AML): current knowledge and future outlook.
    Song X; Peng Y; Wang X; Chen Q; Lan X; Shi F
    Clin Transl Oncol; 2023 Jun; 25(6):1545-1553. PubMed ID: 36587109
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Targeting acute myeloid leukemia through multimodal immunotherapeutic approaches.
    Przespolewski AC; Portwood S; Wang ES
    Leuk Lymphoma; 2022 Apr; 63(4):918-927. PubMed ID: 34818963
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Checkpoint inhibitors and acute myelogenous leukemia: promises and challenges.
    Alfayez M; Borthakur G
    Expert Rev Hematol; 2018 May; 11(5):373-389. PubMed ID: 29589969
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Acute Myeloid Leukemia: Is It T Time?
    Ben Khoud M; Ingegnere T; Quesnel B; Mitra S; Brinster C
    Cancers (Basel); 2021 May; 13(10):. PubMed ID: 34069204
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Immunity in acute myeloid leukemia: Where the immune response and targeted therapy meet.
    Fink A; Hung E; Singh I; Ben-Neriah Y
    Eur J Immunol; 2022 Jan; 52(1):34-43. PubMed ID: 34648664
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Taking the STING out of acute myeloid leukemia through macrophage-mediated phagocytosis.
    Dalton WB; Ghiaur G; Resar LM
    J Clin Invest; 2022 Mar; 132(5):. PubMed ID: 35229728
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The immunosuppressive ligands PD-L1 and CD200 are linked in AML T-cell immunosuppression: identification of a new immunotherapeutic synapse.
    Coles SJ; Gilmour MN; Reid R; Knapper S; Burnett AK; Man S; Tonks A; Darley RL
    Leukemia; 2015 Sep; 29(9):1952-4. PubMed ID: 25748687
    [No Abstract]   [Full Text] [Related]  

  • 99. Immune Biology of Acute Myeloid Leukemia: Implications for Immunotherapy.
    Khaldoyanidi S; Nagorsen D; Stein A; Ossenkoppele G; Subklewe M
    J Clin Oncol; 2021 Feb; 39(5):419-432. PubMed ID: 33434043
    [No Abstract]   [Full Text] [Related]  

  • 100. The role of microenvironment and immunity in drug response in leukemia.
    Bakker E; Qattan M; Mutti L; Demonacos C; Krstic-Demonacos M
    Biochim Biophys Acta; 2016 Mar; 1863(3):414-426. PubMed ID: 26255027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.