These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 25227702)

  • 101. [Research Progress of Immune Heterogeneity in Leukemia Microenvironment--Review].
    Li F; Yang FF; Xu YL
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2023 Oct; 31(5):1569-1573. PubMed ID: 37846718
    [TBL] [Abstract][Full Text] [Related]  

  • 102. DNA: leukemia's secret weapon of bone mass destruction.
    Tait S
    Oncogene; 2013 Oct; 32(44):5199-200. PubMed ID: 23353820
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Use of an anti-CD200-blocking antibody improves immune responses to AML in vitro and in vivo.
    Rastogi N; Baker S; Man S; Uger RA; Wong M; Coles SJ; Hodges M; Gilkes AF; Knapper S; Darley RL; Tonks A
    Br J Haematol; 2021 Apr; 193(1):155-159. PubMed ID: 32996123
    [TBL] [Abstract][Full Text] [Related]  

  • 104. How tumours escape mass destruction.
    Stewart TJ; Abrams SI
    Oncogene; 2008 Oct; 27(45):5894-903. PubMed ID: 18836470
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Immunosuppressive Cell Subsets and Factors in Myeloid Leukemias.
    Swatler J; Turos-Korgul L; Kozlowska E; Piwocka K
    Cancers (Basel); 2021 Mar; 13(6):. PubMed ID: 33801964
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Paving the Way for Immunotherapy in Pediatric Acute Myeloid Leukemia: Current Knowledge and the Way Forward.
    Koedijk JB; van der Werf I; Calkoen FG; Nierkens S; Kaspers GJL; Zwaan CM; Heidenreich O
    Cancers (Basel); 2021 Aug; 13(17):. PubMed ID: 34503174
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Mechanisms of myeloid leukemogenesis: Current perspectives and therapeutic objectives.
    Bouligny IM; Maher KR; Grant S
    Blood Rev; 2023 Jan; 57():100996. PubMed ID: 35989139
    [TBL] [Abstract][Full Text] [Related]  

  • 108. New strategies in acute myelogenous leukemia: leukemogenesis and personalized medicine.
    Gojo I; Karp JE
    Clin Cancer Res; 2014 Dec; 20(24):6233-41. PubMed ID: 25324141
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Moving Myeloid Leukemia Drug Discovery Into the Third Dimension.
    Cartledge Wolf DM; Langhans SA
    Front Pediatr; 2019; 7():314. PubMed ID: 31417884
    [TBL] [Abstract][Full Text] [Related]  

  • 110. The Induction of a Permissive Environment to Promote T Cell Immune Evasion in Acute Myeloid Leukemia: The Metabolic Perspective.
    Mougiakakos D
    Front Oncol; 2019; 9():1166. PubMed ID: 31781489
    [TBL] [Abstract][Full Text] [Related]  

  • 111. The Emerging Profile of Immunotherapy Approaches in the Treatment of AML.
    Daver N
    Oncology (Williston Park); 2019 Jan; 33(1):28-32. PubMed ID: 30731016
    [No Abstract]   [Full Text] [Related]  

  • 112. Genome-wide identification of aberrant alternative splicing and RNA-binding protein regulators in acute myeloid leukaemia which may contribute to immune microenvironment remodelling.
    Yang Y; Zhang YM; Wang Y; Liu K; Cui SY; Luo YQ; Zheng W; Xu J; Duan W; Wang JY
    Carcinogenesis; 2023 Aug; 44(5):418-425. PubMed ID: 37209099
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Editorial: Targets for Immunotherapy in Acute Leukemia.
    Hourigan CS
    Curr Drug Targets; 2017; 18(3):256. PubMed ID: 28264642
    [No Abstract]   [Full Text] [Related]  

  • 114. Metabolic regulation of the bone marrow microenvironment in leukemia.
    Xu B; Hu R; Liang Z; Chen T; Chen J; Hu Y; Jiang Y; Li Y
    Blood Rev; 2021 Jul; 48():100786. PubMed ID: 33353770
    [TBL] [Abstract][Full Text] [Related]  

  • 115. In silico analysis of anti-leukemia immune response and immune evasion in acute myeloid leukemia.
    Krupar R; Schreiber C; Offermann A; Lengerke C; Sikora AG; Thorns C; Perner S
    Leuk Lymphoma; 2018 Oct; 59(10):2493-2496. PubMed ID: 29431550
    [No Abstract]   [Full Text] [Related]  

  • 116. Mechanisms of Immunosuppressive Tumor Evasion: Focus on Acute Lymphoblastic Leukemia.
    Jiménez-Morales S; Aranda-Uribe IS; Pérez-Amado CJ; Ramírez-Bello J; Hidalgo-Miranda A
    Front Immunol; 2021; 12():737340. PubMed ID: 34867958
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Microenvironment and drug resistance in acute myeloid leukemia: Do we know enough?
    Ganesan S; Mathews V; Vyas N
    Int J Cancer; 2022 May; 150(9):1401-1411. PubMed ID: 34921734
    [TBL] [Abstract][Full Text] [Related]  

  • 118. M2 macrophages drive leukemic transformation by imposing resistance to phagocytosis and improving mitochondrial metabolism.
    Weinhäuser I; Pereira-Martins DA; Almeida LY; Hilberink JR; Silveira DRA; Quek L; Ortiz C; Araujo CL; Bianco TM; Lucena-Araujo A; Mota JM; Hogeling SM; Sternadt D; Visser N; Diepstra A; Ammatuna E; Huls G; Rego EM; Schuringa JJ
    Sci Adv; 2023 Apr; 9(15):eadf8522. PubMed ID: 37058562
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Immune evasion in acute myeloid leukemia: current concepts and future directions.
    Teague RM; Kline J
    J Immunother Cancer; 2013 Aug; 1(13):1. PubMed ID: 24353898
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Mechanisms of Immune Evasion in Acute Lymphoblastic Leukemia.
    Pastorczak A; Domka K; Fidyt K; Poprzeczko M; Firczuk M
    Cancers (Basel); 2021 Mar; 13(7):. PubMed ID: 33810515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.