These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25227746)

  • 1. Biomechanical pregnant pelvic system model and numerical simulation of childbirth: impact of delivery on the uterosacral ligaments, preliminary results.
    Lepage J; Jayyosi C; Lecomte-Grosbras P; Brieu M; Duriez C; Cosson M; Rubod C
    Int Urogynecol J; 2015 Apr; 26(4):497-504. PubMed ID: 25227746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pregnancy impact on uterosacral ligament and pelvic muscles using a 3D numerical and finite element model: preliminary results.
    Jean Dit Gautier E; Mayeur O; Lepage J; Brieu M; Cosson M; Rubod C
    Int Urogynecol J; 2018 Mar; 29(3):425-430. PubMed ID: 29188325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of fetal head shape variation on the second stage of labour.
    Yan X; Kruger JA; Nielsen PM; Nash MP
    J Biomech; 2015 Jun; 48(9):1593-9. PubMed ID: 25869719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of pelvic ligaments: a biomechanics study.
    Rivaux G; Rubod C; Dedet B; Brieu M; Gabriel B; Cosson M
    Int Urogynecol J; 2013 Jan; 24(1):135-9. PubMed ID: 22751993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using the novel pelvic organ prolapse histologic quantification system to identify phenotypes in uterosacral ligaments in women with pelvic organ prolapse.
    Orlicky DJ; Guess MK; Bales ES; Rascoff LG; Arruda JS; Hutchinson-Colas JA; Johnson J; Connell KA
    Am J Obstet Gynecol; 2021 Jan; 224(1):67.e1-67.e18. PubMed ID: 33130030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional finite element analysis of the pelvic organ prolapse: A parametric biomechanical modeling.
    Babayi M; Azghani MR; Hajebrahimi S; Berghmans B
    Neurourol Urodyn; 2019 Feb; 38(2):591-598. PubMed ID: 30499117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of normal pelvic mobilities in building an MRI-validated biomechanical model.
    Cosson M; Rubod C; Vallet A; Witz JF; Dubois P; Brieu M
    Int Urogynecol J; 2013 Jan; 24(1):105-12. PubMed ID: 22707008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of the damage evolution in the pelvic floor muscles during childbirth.
    Oliveira DA; Parente MP; Calvo B; Mascarenhas T; Natal Jorge RM
    J Biomech; 2016 Feb; 49(4):594-601. PubMed ID: 26895779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of mesh anchoring technique in uterine prolapse repair surgery: A finite element analysis.
    Silva MET; Bessa JNM; Parente MPL; Mascarenhas T; Natal Jorge RM; Fernandes AA
    J Biomech; 2021 Oct; 127():110649. PubMed ID: 34375905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computer-based simulation of childbirth using the partial Dirichlet-Neumann contact method with total Lagrangian explicit dynamics on the GPU.
    Lapeer R; Gerikhanov Z; Sadulaev SM; Audinis V; Rowland R; Crozier K; Morris E
    Biomech Model Mechanobiol; 2019 Jun; 18(3):681-700. PubMed ID: 30635852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual traumatology of pregnant women: the PRegnant car Occupant Model for Impact Simulations (PROMIS).
    Auriault F; Thollon L; Peres J; Delotte J; Kayvantash K; Brunet C; Behr M
    J Biomech; 2014 Jan; 47(1):207-13. PubMed ID: 24182770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical study on the bladder neck and urethral positions: simulation of impairment of the pelvic ligaments.
    Brandão S; Parente M; Mascarenhas T; da Silva AR; Ramos I; Jorge RN
    J Biomech; 2015 Jan; 48(2):217-23. PubMed ID: 25527889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-compartment 3-D finite element model of rectocele and its interaction with cystocele.
    Luo J; Chen L; Fenner DE; Ashton-Miller JA; DeLancey JO
    J Biomech; 2015 Jun; 48(9):1580-6. PubMed ID: 25757664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical simulation of the fetal descent without imposed theoretical trajectory.
    Buttin R; Zara F; Shariat B; Redarce T; Grangé G
    Comput Methods Programs Biomed; 2013 Aug; 111(2):389-401. PubMed ID: 23731719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D finite element modeling of pelvic organ prolapse.
    Yang Z; Hayes J; Krishnamurty S; Grosse IR
    Comput Methods Biomech Biomed Engin; 2016 Dec; 19(16):1772-1784. PubMed ID: 27174200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the influence of the fetus head molding on the biomechanical behavior of the pelvic floor muscles, during vaginal delivery.
    Silva ME; Oliveira DA; Roza TH; Brandão S; Parente MP; Mascarenhas T; Natal Jorge RM
    J Biomech; 2015 Jun; 48(9):1600-5. PubMed ID: 25757665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of the Childbirth Process in LS-DYNA.
    Tao R; Grimm MJ
    J Biomech Eng; 2024 Jun; 146(6):. PubMed ID: 38299474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast soft-tissue deformations coupled with mixed reality toward the next-generation childbirth training simulator.
    Ballit A; Hivert M; Rubod C; Dao TT
    Med Biol Eng Comput; 2023 Aug; 61(8):2207-2226. PubMed ID: 37382859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanics of Uterosacral Ligaments: Current Knowledge, Existing Gaps, and Future Directions.
    Donaldson K; Huntington A; De Vita R
    Ann Biomed Eng; 2021 Aug; 49(8):1788-1804. PubMed ID: 33754254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of the mobility of the pelvic system: influence of fascia between organs.
    Diallo MN; Mayeur O; Lecomte-Grosbras P; Patrouix L; Witz JF; Lesaffre F; Rubod C; Cosson M; Brieu M
    Comput Methods Biomech Biomed Engin; 2022 Aug; 25(10):1073-1087. PubMed ID: 34783611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.