BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 25228124)

  • 1. Computational identification of a phospholipidosis toxicophore using (13)C and (15)N NMR-distance based fingerprints.
    Slavov SH; Wilkes JG; Buzatu DA; Kruhlak NL; Willard JM; Hanig JP; Beger RD
    Bioorg Med Chem; 2014 Dec; 22(23):6706-6714. PubMed ID: 25228124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-SDAR modeling of hERG potassium channel affinity: A case study in model design and toxicophore identification.
    Stoyanova-Slavova IB; Slavov SH; Buzatu DA; Beger RD; Wilkes JG
    J Mol Graph Model; 2017 Mar; 72():246-255. PubMed ID: 28129595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why are most phospholipidosis inducers also hERG blockers?
    Slavov S; Stoyanova-Slavova I; Li S; Zhao J; Huang R; Xia M; Beger R
    Arch Toxicol; 2017 Dec; 91(12):3885-3895. PubMed ID: 28551711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial least square and k-nearest neighbor algorithms for improved 3D quantitative spectral data-activity relationship consensus modeling of acute toxicity.
    Stoyanova-Slavova IB; Slavov SH; Pearce B; Buzatu DA; Beger RD; Wilkes JG
    Environ Toxicol Chem; 2014 Jun; 33(6):1271-82. PubMed ID: 24464801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction and Consensus Performance of (Q)SAR Models for Predicting Phospholipidosis Using a Dataset of 743 Compounds.
    Orogo AM; Choi SS; Minnier BL; Kruhlak NL
    Mol Inform; 2012 Oct; 31(10):725-39. PubMed ID: 27476455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of drugs inducing phospholipidosis by novel in vitro data.
    Muehlbacher M; Tripal P; Roas F; Kornhuber J
    ChemMedChem; 2012 Nov; 7(11):1925-34. PubMed ID: 22945602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the risk of phospholipidosis using a new multidisciplinary pipeline approach.
    Goracci L; Buratta S; Urbanelli L; Ferrara G; Di Guida R; Emiliani C; Cross S
    Eur J Med Chem; 2015 Mar; 92():49-63. PubMed ID: 25544686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How does the quality of phospholipidosis data influence the predictivity of structural alerts?
    Przybylak KR; Alzahrani AR; Cronin MT
    J Chem Inf Model; 2014 Aug; 54(8):2224-32. PubMed ID: 25062434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rigorous 3-dimensional spectral data activity relationship approach modeling strategy for ToxCast estrogen receptor data classification, validation, and feature extraction.
    Slavov SH; Beger RD
    Environ Toxicol Chem; 2017 Mar; 36(3):823-830. PubMed ID: 27509091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational identification of structural factors affecting the mutagenic potential of aromatic amines: study design and experimental validation.
    Slavov SH; Stoyanova-Slavova I; Mattes W; Beger RD; Brüschweiler BJ
    Arch Toxicol; 2018 Jul; 92(7):2369-2384. PubMed ID: 29779177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementary PLS and KNN algorithms for improved 3D-QSDAR consensus modeling of AhR binding.
    Slavov SH; Pearce BA; Buzatu DA; Wilkes JG; Beger RD
    J Cheminform; 2013 Nov; 5(1):47. PubMed ID: 24257141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ¹³C NMR-distance matrix descriptors: optimal abstract 3D space granularity for predicting estrogen binding.
    Slavov SH; Geesaman EL; Pearce BA; Schnackenberg LK; Buzatu DA; Wilkes JG; Beger RD
    J Chem Inf Model; 2012 Jul; 52(7):1854-64. PubMed ID: 22681591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling phospholipidosis induction: reliability and warnings.
    Goracci L; Ceccarelli M; Bonelli D; Cruciani G
    J Chem Inf Model; 2013 Jun; 53(6):1436-46. PubMed ID: 23692521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Silico Studies of the Relationship Between Chemical Structure and Drug Induced Phospholipidosis.
    Przybylak KR; Cronin MT
    Mol Inform; 2011 May; 30(5):415-29. PubMed ID: 27467088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting in vivo phospholipidosis-inducing potential of drugs by a combined high content screening and in silico modelling approach.
    Bauch C; Bevan S; Woodhouse H; Dilworth C; Walker P
    Toxicol In Vitro; 2015 Apr; 29(3):621-30. PubMed ID: 25668432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment of an in silico phospholipidosis prediction method using descriptors related to molecular interactions causing phospholipid-compound complex formation.
    Haranosono Y; Nemoto S; Kurata M; Sakaki H
    J Toxicol Sci; 2016 Apr; 41(2):321-8. PubMed ID: 26961617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between in vitro phospholipidosis assay using HepG2 cells and 2-week toxicity studies in rats.
    Miyamoto S; Matsumoto A; Mori I; Horinouchi A
    Toxicol Mech Methods; 2009 Oct; 19(8):477-85. PubMed ID: 19793005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational modeling of biologically active molecules using NMR spectra.
    Beger RD
    Drug Discov Today; 2006 May; 11(9-10):429-35. PubMed ID: 16635805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro detection of drug-induced phospholipidosis using gene expression and fluorescent phospholipid based methodologies.
    Nioi P; Perry BK; Wang EJ; Gu YZ; Snyder RD
    Toxicol Sci; 2007 Sep; 99(1):162-73. PubMed ID: 17567588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. (13)C NMR and electron ionization mass spectrometric data-activity relationship model of estrogen receptor binding.
    Beger RD; Freeman JP; Lay JO; Wilkes JG; Miller DW
    Toxicol Appl Pharmacol; 2000 Nov; 169(1):17-25. PubMed ID: 11076692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.