These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 25228124)

  • 21. Liposome electrokinetic chromatography based in vitro model for early screening of the drug-induced phospholipidosis risk.
    Wang T; Feng Y; Jin X; Fan X; Crommen J; Jiang Z
    J Pharm Biomed Anal; 2014 Aug; 96():263-71. PubMed ID: 24814828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In silico assay for assessing phospholipidosis potential of small druglike molecules: training, validation, and refinement using several data sets.
    Fischer H; Atzpodien EA; Csato M; Doessegger L; Lenz B; Schmitt G; Singer T
    J Med Chem; 2012 Jan; 55(1):126-39. PubMed ID: 22122484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the phospholipidogenic potential of 4(1H)-pyridone antimalarial derivatives.
    Almela MJ; Torres PA; Lozano S; Herreros E
    Toxicol In Vitro; 2009 Dec; 23(8):1528-34. PubMed ID: 19540329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of metabolic activation leading to drug-induced phospholipidosis in rat hepatocyte spheroids.
    Takagi M; Sanoh S; Santoh M; Ejiri Y; Kotake Y; Ohta S
    J Toxicol Sci; 2016 Feb; 41(1):155-64. PubMed ID: 26763403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro validation of drug-induced phospholipidosis.
    Park S; Choi YJ; Lee BH
    J Toxicol Sci; 2012; 37(2):261-7. PubMed ID: 22467016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of a genomic and a multiplex cell imaging approach for the detection of phospholipidosis.
    Tilmant K; Gerets HH; Dhalluin S; Hanon E; Depelchin O; Cossu-Leguille C; Vasseur P; Atienzar FA
    Toxicol In Vitro; 2011 Oct; 25(7):1414-24. PubMed ID: 21515356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of the diagnostic accuracy of di-22:6-bis(monoacylglycerol)phosphate and other urinary phospholipids for drug-induced phospholipidosis or tissue injury in the rat.
    Thompson KL; Haskins K; Rosenzweig BA; Stewart S; Zhang J; Peters D; Knapton A; Rouse R; Mans D; Colatsky T
    Int J Toxicol; 2012; 31(1):14-24. PubMed ID: 22267869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NMR-based urine analysis in rats: prediction of proximal tubule kidney toxicity and phospholipidosis.
    Lienemann K; Plötz T; Pestel S
    J Pharmacol Toxicol Methods; 2008; 58(1):41-9. PubMed ID: 18606234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of 13C NMR spectrometric data to produce a predictive model of estrogen receptor binding activity.
    Beger RD; Freeman JP; Lay JO; Wilkes JG; Miller DW
    J Chem Inf Comput Sci; 2001; 41(1):219-24. PubMed ID: 11206376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drug-induced phospholipidosis is caused by blockade of mannose 6-phosphate receptor-mediated targeting of lysosomal enzymes.
    Ikeda K; Hirayama M; Hirota Y; Asa E; Seki J; Tanaka Y
    Biochem Biophys Res Commun; 2008 Dec; 377(1):268-74. PubMed ID: 18840403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative structural connectivity spectra analysis (CoSCoSA) models of steroid binding to the corticosteroid binding globulin.
    Beger RD; Buzatu DA; Wilkes JG; Lay JO
    J Chem Inf Comput Sci; 2002; 42(5):1123-31. PubMed ID: 12376999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Developing 13C NMR quantitative spectrometric data-activity relationship (QSDAR) models of steroid binding to the corticosteroid binding globulin.
    Beger RD; Wilkes JG
    J Comput Aided Mol Des; 2001 Jul; 15(7):659-69. PubMed ID: 11688946
    [TBL] [Abstract][Full Text] [Related]  

  • 33. pH-gradient PAMPA-based in vitro model assay for drug-induced phospholipidosis in early stage of drug discovery.
    Balogh GT; Müller J; Könczöl A
    Eur J Pharm Sci; 2013 Apr; 49(1):81-9. PubMed ID: 23439241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cationic amphiphilic drug-induced phospholipidosis.
    Halliwell WH
    Toxicol Pathol; 1997; 25(1):53-60. PubMed ID: 9061852
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of phospholipidosis potential based on gene expression analysis in HepG2 cells.
    Atienzar F; Gerets H; Dufrane S; Tilmant K; Cornet M; Dhalluin S; Ruty B; Rose G; Canning M
    Toxicol Sci; 2007 Mar; 96(1):101-14. PubMed ID: 17175557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. (13)C NMR quantitative spectrometric data-activity relationship (QSDAR) models of steroids binding the aromatase enzyme.
    Beger RD; Buzatu DA; Wilkes JG; Lay JO
    J Chem Inf Comput Sci; 2001; 41(5):1360-6. PubMed ID: 11604038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative structural connectivity spectra analysis (CoSCoSA) models of steroids binding to the aromatase enzyme.
    Beger RD; Wilkes JG
    J Mol Recognit; 2002; 15(3):154-62. PubMed ID: 12203841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phospholipidosis as a function of basicity, lipophilicity, and volume of distribution of compounds.
    Hanumegowda UM; Wenke G; Regueiro-Ren A; Yordanova R; Corradi JP; Adams SP
    Chem Res Toxicol; 2010 Apr; 23(4):749-55. PubMed ID: 20356072
    [TBL] [Abstract][Full Text] [Related]  

  • 39. First report on predictive chemometric modeling, 3D-toxicophore mapping and in silico screening of in vitro basal cytotoxicity of diverse organic chemicals.
    Kar S; Roy K
    Toxicol In Vitro; 2013 Mar; 27(2):597-608. PubMed ID: 23481321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In silico modeling to predict drug-induced phospholipidosis.
    Choi SS; Kim JS; Valerio LG; Sadrieh N
    Toxicol Appl Pharmacol; 2013 Jun; 269(2):195-204. PubMed ID: 23541745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.