These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25228247)

  • 1. Predicting disease associations via biological network analysis.
    Sun K; Gonçalves JP; Larminie C; Przulj N
    BMC Bioinformatics; 2014 Sep; 15(1):304. PubMed ID: 25228247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The integrated disease network.
    Sun K; Buchan N; Larminie C; Pržulj N
    Integr Biol (Camb); 2014 Nov; 6(11):1069-79. PubMed ID: 25133803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks.
    Zhang H; Liang Y; Peng C; Han S; Du W; Li Y
    Math Biosci; 2019 Sep; 315():108229. PubMed ID: 31323239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the effect of annotation size on measures of semantic similarity.
    Kulmanov M; Hoehndorf R
    J Biomed Semantics; 2017 Feb; 8(1):7. PubMed ID: 28193260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records.
    Jiang L; Edwards SM; Thomsen B; Workman CT; Guldbrandtsen B; Sørensen P
    BMC Bioinformatics; 2014 Sep; 15(1):315. PubMed ID: 25253562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the measurement of semantic similarity between gene ontology terms and gene products: insights from an edge- and IC-based hybrid method.
    Wu X; Pang E; Lin K; Pei ZM
    PLoS One; 2013; 8(5):e66745. PubMed ID: 23741529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GO functional similarity clustering depends on similarity measure, clustering method, and annotation completeness.
    Liu M; Thomas PD
    BMC Bioinformatics; 2019 Mar; 20(1):155. PubMed ID: 30917779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translating genome wide association study results to associations among common diseases: in silico study with an electronic medical record.
    Anand V; Rosenman MB; Downs SM
    Int J Med Inform; 2013 Sep; 82(9):864-74. PubMed ID: 23743324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genome-wide MeSH-based literature mining system predicts implicit gene-to-gene relationships and networks.
    Xiang Z; Qin T; Qin ZS; He Y
    BMC Syst Biol; 2013 Oct; 7 Suppl 3(Suppl 3):S9. PubMed ID: 24555475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TopoICSim: a new semantic similarity measure based on gene ontology.
    Ehsani R; Drabløs F
    BMC Bioinformatics; 2016 Jul; 17(1):296. PubMed ID: 27473391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel disease syndromes unveiled by integrative multiscale network analysis of diseases sharing molecular effectors and comorbidities.
    Li H; Fan J; Vitali F; Berghout J; Aberasturi D; Li J; Wilson L; Chiu W; Pumarejo M; Han J; Kenost C; Koripella PC; Pouladi N; Billheimer D; Bedrick EJ; Lussier YA
    BMC Med Genomics; 2018 Dec; 11(Suppl 6):112. PubMed ID: 30598089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing an integrated gene similarity network for the identification of disease genes.
    Tian Z; Guo M; Wang C; Xing L; Wang L; Zhang Y
    J Biomed Semantics; 2017 Sep; 8(Suppl 1):32. PubMed ID: 29297379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction.
    Chen X; Yin J; Qu J; Huang L
    PLoS Comput Biol; 2018 Aug; 14(8):e1006418. PubMed ID: 30142158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Annotating Diseases Using Human Phenotype Ontology Improves Prediction of Disease-Associated Long Non-coding RNAs.
    Le DH; Dao LTM
    J Mol Biol; 2018 Jul; 430(15):2219-2230. PubMed ID: 29758261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing Disease Similarity Networks Based on Disease Module Theory.
    Ni P; Wang J; Zhong P; Li Y; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):906-915. PubMed ID: 29993782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of similarity measurements in miRNAs with applications to miRNA-disease association predictions.
    Chen H; Guo R; Li G; Zhang W; Zhang Z
    BMC Bioinformatics; 2020 May; 21(1):176. PubMed ID: 32366225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. e-GRASP: an integrated evolutionary and GRASP resource for exploring disease associations.
    Karim S; NourEldin HF; Abusamra H; Salem N; Alhathli E; Dudley J; Sanderford M; Scheinfeldt LB; Chaudhary AG; Al-Qahtani MH; Kumar S
    BMC Genomics; 2016 Oct; 17(Suppl 9):770. PubMed ID: 27766955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trait ontology analysis based on association mapping studies bridges the gap between crop genomics and Phenomics.
    Pan Q; Wei J; Guo F; Huang S; Gong Y; Liu H; Liu J; Li L
    BMC Genomics; 2019 Jun; 20(1):443. PubMed ID: 31159731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DaGO-Fun: tool for Gene Ontology-based functional analysis using term information content measures.
    Mazandu GK; Mulder NJ
    BMC Bioinformatics; 2013 Sep; 14():284. PubMed ID: 24067102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VTCdb: a gene co-expression database for the crop species Vitis vinifera (grapevine).
    Wong DC; Sweetman C; Drew DP; Ford CM
    BMC Genomics; 2013 Dec; 14():882. PubMed ID: 24341535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.