These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 25228765)

  • 1. Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells.
    Corns LF; Johnson SL; Kros CJ; Marcotti W
    Proc Natl Acad Sci U S A; 2014 Oct; 111(41):14918-23. PubMed ID: 25228765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tmc1 Point Mutation Affects Ca2+ Sensitivity and Block by Dihydrostreptomycin of the Mechanoelectrical Transducer Current of Mouse Outer Hair Cells.
    Corns LF; Johnson SL; Kros CJ; Marcotti W
    J Neurosci; 2016 Jan; 36(2):336-49. PubMed ID: 26758827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contribution of TMC1 to adaptation of mechanoelectrical transduction channels in cochlear outer hair cells.
    Goldring AC; Beurg M; Fettiplace R
    J Physiol; 2019 Dec; 597(24):5949-5961. PubMed ID: 31633194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MET currents and otoacoustic emissions from mice with a detached tectorial membrane indicate the extracellular matrix regulates Ca
    Jeng JY; Harasztosi C; Carlton AJ; Corns LF; Marchetta P; Johnson SL; Goodyear RJ; Legan KP; Rüttiger L; Richardson GP; Marcotti W
    J Physiol; 2021 Apr; 599(7):2015-2036. PubMed ID: 33559882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The acquisition of mechano-electrical transducer current adaptation in auditory hair cells requires myosin VI.
    Marcotti W; Corns LF; Goodyear RJ; Rzadzinska AK; Avraham KB; Steel KP; Richardson GP; Kros CJ
    J Physiol; 2016 Jul; 594(13):3667-81. PubMed ID: 27111754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast adaptation and Ca2+ sensitivity of the mechanotransducer require myosin-XVa in inner but not outer cochlear hair cells.
    Stepanyan R; Frolenkov GI
    J Neurosci; 2009 Apr; 29(13):4023-34. PubMed ID: 19339598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hair Bundle Stimulation Mode Modifies Manifestations of Mechanotransduction Adaptation.
    Caprara GA; Mecca AA; Wang Y; Ricci AJ; Peng AW
    J Neurosci; 2019 Nov; 39(46):9098-9106. PubMed ID: 31578232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piezo1 haploinsufficiency does not alter mechanotransduction in mouse cochlear outer hair cells.
    Corns LF; Marcotti W
    Physiol Rep; 2016 Feb; 4(3):. PubMed ID: 26869684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation Independent Modulation of Auditory Hair Cell Mechanotransduction Channel Open Probability Implicates a Role for the Lipid Bilayer.
    Peng AW; Gnanasambandam R; Sachs F; Ricci AJ
    J Neurosci; 2016 Mar; 36(10):2945-56. PubMed ID: 26961949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence imaging of Na+ influx via P2X receptors in cochlear hair cells.
    Housley GD; Raybould NP; Thorne PR
    Hear Res; 1998 May; 119(1-2):1-13. PubMed ID: 9641314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoinositol-4,5-Bisphosphate Regulates Auditory Hair-Cell Mechanotransduction-Channel Pore Properties and Fast Adaptation.
    Effertz T; Becker L; Peng AW; Ricci AJ
    J Neurosci; 2017 Nov; 37(48):11632-11646. PubMed ID: 29066559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transduction without tip links in cochlear hair cells is mediated by ion channels with permeation properties distinct from those of the mechano-electrical transducer channel.
    Marcotti W; Corns LF; Desmonds T; Kirkwood NK; Richardson GP; Kros CJ
    J Neurosci; 2014 Apr; 34(16):5505-14. PubMed ID: 24741041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of Baiap2l2 destabilizes the transducing stereocilia of cochlear hair cells and leads to deafness.
    Carlton AJ; Halford J; Underhill A; Jeng JY; Avenarius MR; Gilbert ML; Ceriani F; Ebisine K; Brown SDM; Bowl MR; Barr-Gillespie PG; Marcotti W
    J Physiol; 2021 Feb; 599(4):1173-1198. PubMed ID: 33151556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active hair bundle motion linked to fast transducer adaptation in auditory hair cells.
    Ricci AJ; Crawford AC; Fettiplace R
    J Neurosci; 2000 Oct; 20(19):7131-42. PubMed ID: 11007868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for opening of hair-cell transducer channels after tip-link loss.
    Meyer J; Furness DN; Zenner HP; Hackney CM; Gummer AW
    J Neurosci; 1998 Sep; 18(17):6748-56. PubMed ID: 9712646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The actions of calcium on hair bundle mechanics in mammalian cochlear hair cells.
    Beurg M; Nam JH; Crawford A; Fettiplace R
    Biophys J; 2008 Apr; 94(7):2639-53. PubMed ID: 18178649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling between the Stereocilia of Rat Sensory Inner-Hair-Cell Hair Bundles Is Weak, Shaping Their Sensitivity to Stimulation.
    Scharr AL; Ó Maoiléidigh D; Ricci AJ
    J Neurosci; 2023 Mar; 43(12):2053-2074. PubMed ID: 36746628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells.
    Ricci AJ; Wu YC; Fettiplace R
    J Neurosci; 1998 Oct; 18(20):8261-77. PubMed ID: 9763471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in mechano-transducer channel kinetics underlie tonotopic distribution of fast adaptation in auditory hair cells.
    Ricci A
    J Neurophysiol; 2002 Apr; 87(4):1738-48. PubMed ID: 11929895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable number of TMC1-dependent mechanotransducer channels underlie tonotopic conductance gradients in the cochlea.
    Beurg M; Cui R; Goldring AC; Ebrahim S; Fettiplace R; Kachar B
    Nat Commun; 2018 Jun; 9(1):2185. PubMed ID: 29872055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.