These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 25228765)

  • 41. Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells.
    Kennedy HJ; Evans MG; Crawford AC; Fettiplace R
    Nat Neurosci; 2003 Aug; 6(8):832-6. PubMed ID: 12872124
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinematic analysis of shear displacement as a means for operating mechanotransduction channels in the contact region between adjacent stereocilia of mammalian cochlear hair cells.
    Furness DN; Zetes DE; Hackney CM; Steele CR
    Proc Biol Sci; 1997 Jan; 264(1378):45-51. PubMed ID: 9061959
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Developmental changes in the cochlear hair cell mechanotransducer channel and their regulation by transmembrane channel-like proteins.
    Kim KX; Fettiplace R
    J Gen Physiol; 2013 Jan; 141(1):141-8. PubMed ID: 23277480
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fate of mammalian cochlear hair cells and stereocilia after loss of the stereocilia.
    Jia S; Yang S; Guo W; He DZ
    J Neurosci; 2009 Dec; 29(48):15277-85. PubMed ID: 19955380
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recovery of mechano-electrical transduction in rat cochlear hair bundles after postnatal destruction of the stereociliar cross-links.
    Ebert J; Fink S; Koitschev A; Walther P; Langer MG; Lehmann-Horn F
    Proc Biol Sci; 2010 Aug; 277(1692):2291-9. PubMed ID: 20356889
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stereocilia fusion pathology in the cochlear outer hair cells at the nanoscale level.
    Ikäheimo K; Leinonen S; Lankinen T; Lindahl M; Saarma M; Pirvola U
    J Physiol; 2024 Aug; 602(16):3995-4025. PubMed ID: 39037943
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rapid mechanical stimulation of inner-ear hair cells by photonic pressure.
    Abeytunge S; Gianoli F; Hudspeth AJ; Kozlov AS
    Elife; 2021 Jul; 10():. PubMed ID: 34227465
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanosensory hair cells express two molecularly distinct mechanotransduction channels.
    Wu Z; Grillet N; Zhao B; Cunningham C; Harkins-Perry S; Coste B; Ranade S; Zebarjadi N; Beurg M; Fettiplace R; Patapoutian A; Mueller U
    Nat Neurosci; 2017 Jan; 20(1):24-33. PubMed ID: 27893727
    [TBL] [Abstract][Full Text] [Related]  

  • 49. FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel.
    Gale JE; Marcotti W; Kennedy HJ; Kros CJ; Richardson GP
    J Neurosci; 2001 Sep; 21(18):7013-25. PubMed ID: 11549711
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The resting transducer current drives spontaneous activity in prehearing mammalian cochlear inner hair cells.
    Johnson SL; Kennedy HJ; Holley MC; Fettiplace R; Marcotti W
    J Neurosci; 2012 Aug; 32(31):10479-83. PubMed ID: 22855797
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gating energies and forces of the mammalian hair cell transducer channel and related hair bundle mechanics.
    van Netten SM; Kros CJ
    Proc Biol Sci; 2000 Sep; 267(1455):1915-23. PubMed ID: 11052545
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A model for amplification of hair-bundle motion by cyclical binding of Ca2+ to mechanoelectrical-transduction channels.
    Choe Y; Magnasco MO; Hudspeth AJ
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15321-6. PubMed ID: 9860967
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Steady-state adaptation of mechanotransduction modulates the resting potential of auditory hair cells, providing an assay for endolymph [Ca2+].
    Farris HE; Wells GB; Ricci AJ
    J Neurosci; 2006 Nov; 26(48):12526-36. PubMed ID: 17135414
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations.
    Kros CJ; Marcotti W; van Netten SM; Self TJ; Libby RT; Brown SD; Richardson GP; Steel KP
    Nat Neurosci; 2002 Jan; 5(1):41-7. PubMed ID: 11753415
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea.
    He DZ; Jia S; Dallos P
    Nature; 2004 Jun; 429(6993):766-70. PubMed ID: 15201911
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Underestimated sensitivity of mammalian cochlear hair cells due to splay between stereociliary columns.
    Nam JH; Peng AW; Ricci AJ
    Biophys J; 2015 Jun; 108(11):2633-47. PubMed ID: 26039165
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Clustered Ca
    Vincent PFY; Cho S; Tertrais M; Bouleau Y; von Gersdorff H; Dulon D
    Cell Rep; 2018 Dec; 25(12):3451-3464.e3. PubMed ID: 30566869
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Localisation of the mechanotransducer channels in mammalian cochlear hair cells provides clues to their gating.
    Furness DN; Hackney CM; Evans MG
    J Physiol; 2010 Mar; 588(Pt 5):765-72. PubMed ID: 20026619
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tonotopy in calcium homeostasis and vulnerability of cochlear hair cells.
    Fettiplace R; Nam JH
    Hear Res; 2019 May; 376():11-21. PubMed ID: 30473131
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The actions of calcium on the mechano-electrical transducer current of turtle hair cells.
    Crawford AC; Evans MG; Fettiplace R
    J Physiol; 1991 Mar; 434():369-98. PubMed ID: 1708822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.