These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 25228767)

  • 1. Giant and switchable surface activity of liquid metal via surface oxidation.
    Khan MR; Eaker CB; Bowden EF; Dickey MD
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14047-51. PubMed ID: 25228767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Method to Manipulate Surface Tension of a Liquid Metal via Surface Oxidation and Reduction.
    Eaker CB; Khan MR; Dickey MD
    J Vis Exp; 2016 Jan; (107):e53567. PubMed ID: 26863045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation-Mediated Fingering in Liquid Metals.
    Eaker CB; Hight DC; O'Regan JD; Dickey MD; Daniels KE
    Phys Rev Lett; 2017 Oct; 119(17):174502. PubMed ID: 29219460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging applications of liquid metals featuring surface oxides.
    Dickey MD
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18369-79. PubMed ID: 25283244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steering liquid metal flow in microchannels using low voltages.
    Tang SY; Lin Y; Joshipura ID; Khoshmanesh K; Dickey MD
    Lab Chip; 2015 Oct; 15(19):3905-11. PubMed ID: 26279150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of water on the interfacial behavior of gallium liquid metal alloys.
    Khan MR; Trlica C; So JH; Valeri M; Dickey MD
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22467-73. PubMed ID: 25469554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrolytic reduction of liquid metal oxides and its application to reconfigurable structured devices.
    Wang J; Appusamy K; Guruswamy S; Nahata A
    Sci Rep; 2015 Mar; 5():8637. PubMed ID: 25727894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attributes, Fabrication, and Applications of Gallium-Based Liquid Metal Particles.
    Lin Y; Genzer J; Dickey MD
    Adv Sci (Weinh); 2020 Jun; 7(12):2000192. PubMed ID: 32596120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface of gallium-based liquid metals: oxide skin, wetting, and applications.
    Kim JH; Kim S; Dickey MD; So JH; Koo HJ
    Nanoscale Horiz; 2024 Jun; 9(7):1099-1119. PubMed ID: 38716614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid metal enabled microfluidics.
    Khoshmanesh K; Tang SY; Zhu JY; Schaefer S; Mitchell A; Kalantar-Zadeh K; Dickey MD
    Lab Chip; 2017 Mar; 17(6):974-993. PubMed ID: 28225135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of Liquid Metals in Nanotechnology.
    Kalantar-Zadeh K; Tang J; Daeneke T; O'Mullane AP; Stewart LA; Liu J; Majidi C; Ruoff RS; Weiss PS; Dickey MD
    ACS Nano; 2019 Jul; 13(7):7388-7395. PubMed ID: 31245995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxide-Free Actuation of Gallium Liquid Metal Alloys Enabled by Novel Acidified Siloxane Oils.
    Holcomb S; Brothers M; Diebold A; Thatcher W; Mast D; Tabor C; Heikenfeld J
    Langmuir; 2016 Dec; 32(48):12656-12663. PubMed ID: 27934511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial Electrochemical Polymerization for Spinning Liquid Metals into Core-Shell Wires.
    Long L; Che X; Yao P; Zhang X; Wang J; Li M; Li C
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18690-18696. PubMed ID: 35420779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the Interfacial Contact and Charge Transport of Gas-Sensing Liquid Metal Marbles.
    Chi Y; Han J; Zheng J; Yang J; Cao Z; Ghasemian MB; Rahim MA; Kalantar-Zadeh K; Kumar P; Tang J
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):30112-30123. PubMed ID: 35737904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breakup-Free and Colorful Liquid Metal Thin Films via Electrochemical Oxidation.
    Chen Y; Ma B; Chen G; Zhang J; Feng D; Tian W; Zhang T; Zhao C; Rong F; Liu H
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37874892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring Electrochemical Extrusion of Wires from Liquid Metals.
    Han J; Tang J; Idrus-Saidi SA; Christoe MJ; O'Mullane AP; Kalantar-Zadeh K
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):31010-31020. PubMed ID: 32545950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing.
    Thelen J; Dickey MD; Ward T
    Lab Chip; 2012 Oct; 12(20):3961-7. PubMed ID: 22895484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterning and Reversible Actuation of Liquid Gallium Alloys by Preventing Adhesion on Rough Surfaces.
    Joshipura ID; Ayers HR; Castillo GA; Ladd C; Tabor CE; Adams JJ; Dickey MD
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44686-44695. PubMed ID: 30532957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning (ML)-assisted surface tension and oscillation-induced elastic modulus studies of oxide-coated liquid metal (LM) alloys.
    Hossain KZ; Kamran SA; Tavakkoli A; Khan MR
    JPhys Mater; 2023 Oct; 6(4):045009. PubMed ID: 37881171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stretchable and Soft Electronics using Liquid Metals.
    Dickey MD
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28417536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.