BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 25228772)

  • 1. Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle.
    Li C; Wang J
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14130-5. PubMed ID: 25228772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the Underlying Mechanisms of the Xenopus laevis Embryonic Cell Cycle.
    Zhang K; Wang J
    J Phys Chem B; 2018 May; 122(21):5487-5499. PubMed ID: 29310435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive complex systems approach to the study and analysis of mammalian cell cycle control system in the presence of DNA damage stress.
    Abroudi A; Samarasinghe S; Kulasiri D
    J Theor Biol; 2017 Sep; 429():204-228. PubMed ID: 28647496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Funneled potential and flux landscapes dictate the stabilities of both the states and the flow: Fission yeast cell cycle.
    Luo X; Xu L; Han B; Wang J
    PLoS Comput Biol; 2017 Sep; 13(9):e1005710. PubMed ID: 28892489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential and flux landscapes quantify the stability and robustness of budding yeast cell cycle network.
    Wang J; Li C; Wang E
    Proc Natl Acad Sci U S A; 2010 May; 107(18):8195-200. PubMed ID: 20393126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Searching for the Mechanisms of Mammalian Cellular Aging Through Underlying Gene Regulatory Networks.
    Li W; Zhao L; Wang J
    Front Genet; 2020; 11():593. PubMed ID: 32714367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the underlying mechanisms of the coupling between cell differentiation and cell cycle.
    Zhang K; Wang J
    J Phys Chem B; 2019 Apr; 123(16):3490-3498. PubMed ID: 30933510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations.
    Wang J; Xu L; Wang E
    Proc Natl Acad Sci U S A; 2008 Aug; 105(34):12271-6. PubMed ID: 18719111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying Landscape-Flux via Single-Cell Transcriptomics Uncovers the Underlying Mechanism of Cell Cycle.
    Zhu L; Wang J
    Adv Sci (Weinh); 2024 Apr; 11(16):e2308879. PubMed ID: 38353329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of motor network dynamics in Parkinson's disease by means of landscape and flux theory.
    Yan H; Wang J
    PLoS One; 2017; 12(3):e0174364. PubMed ID: 28350890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A feedback loop of conditionally stable circuits drives the cell cycle from checkpoint to checkpoint.
    Deritei D; Rozum J; Ravasz Regan E; Albert R
    Sci Rep; 2019 Nov; 9(1):16430. PubMed ID: 31712566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequilibrium landscape theory of neural networks.
    Yan H; Zhao L; Hu L; Wang X; Wang E; Wang J
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):E4185-94. PubMed ID: 24145451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Landscape, flux, correlation, resonance, coherence, stability, and key network wirings of stochastic circadian oscillation.
    Li C; Wang E; Wang J
    Biophys J; 2011 Sep; 101(6):1335-44. PubMed ID: 21943414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards abstraction of computational modelling of mammalian cell cycle: Model reduction pipeline incorporating multi-level hybrid petri nets.
    Abroudi A; Samarasinghe S; Kulasiri D
    J Theor Biol; 2020 Jul; 496():110212. PubMed ID: 32142804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential landscape and probabilistic flux of a predator prey network.
    Li C; Wang E; Wang J
    PLoS One; 2011 Mar; 6(3):e17888. PubMed ID: 21423576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: landscape and biological paths.
    Li C; Wang J
    PLoS Comput Biol; 2013; 9(8):e1003165. PubMed ID: 23935477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A modular approach for modeling the cell cycle based on functional response curves.
    De Boeck J; Rombouts J; Gelens L
    PLoS Comput Biol; 2021 Aug; 17(8):e1009008. PubMed ID: 34379640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the Landscape and Transition Paths for Proliferation-Quiescence Fate Decisions.
    Chen Z; Li C
    J Clin Med; 2020 Aug; 9(8):. PubMed ID: 32784979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Representing perturbed dynamics in biological network models.
    Stoll G; Rougemont J; Naef F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011917. PubMed ID: 17677504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Network Dynamics of Cell Cycle Control: Periodicity of Start and Finish.
    Palmisano A; Zámborszky J; Oguz C; Csikász-Nagy A
    Methods Mol Biol; 2017; 1524():331-349. PubMed ID: 27815913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.