These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25228786)

  • 1. Prefilled syringes and usability of ophthalmic viscosurgical devices.
    Shiba T; Tsuneoka H
    Clin Ophthalmol; 2014; 8():1697-702. PubMed ID: 25228786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheological and Adhesive Properties to Identify Cohesive and Dispersive Ophthalmic Viscosurgical Devices.
    Watanabe I; Hoshi H; Sato M; Suzuki K
    Chem Pharm Bull (Tokyo); 2019; 67(3):277-283. PubMed ID: 30828005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Addition Of D-Sorbitol Improves The Usability Of Ophthalmic Viscosurgical Devices.
    Watanabe I; Nagata M; Matsushima H
    Clin Ophthalmol; 2019; 13():1877-1885. PubMed ID: 31576103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in Understanding the Mechanism of Ophthalmic Viscosurgical Device Retention in the Anterior Chamber or on the Corneal Surface during Ocular Surgery.
    Watanabe I; Yoshioka K; Takahashi K; Hoshi H; Nagata M; Matsushima H; Suzuki K
    Chem Pharm Bull (Tokyo); 2021; 69(6):595-599. PubMed ID: 34078806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dispersive viscosurgical devices demonstrate greater efficacy in protecting corneal endothelium in vitro.
    Yildirim TM; Auffarth GU; Son HS; Khoramnia R; Munro DJ; Merz PR
    BMJ Open Ophthalmol; 2019; 4(1):e000227. PubMed ID: 30997401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Evaluation of Rheological Properties of Cohesive Ophthalmic Viscosurgical Devices Composed of Sodium Hyaluronate with High Molecular Weight-2019].
    Watanabe I; Mirumachi H; Konno H; Suzuki K
    Yakugaku Zasshi; 2019; 139(8):1121-1128. PubMed ID: 31366849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Assessment of Ophthalmic Viscosurgical Devices on Visibility, Spreadability, and Durability as Corneal Wetting Agents for the Wet Shell Technique.
    Watanabe I; Hoshi H; Suzuki K; Nagata M; Matsushima H
    Ophthalmol Ther; 2020 Sep; 9(3):609-623. PubMed ID: 32613592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro behavior of ophthalmic viscosurgical devices during phacoemulsification.
    Bissen-Miyajima H
    J Cataract Refract Surg; 2006 Jun; 32(6):1026-31. PubMed ID: 16814065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alteration of free radical development by ophthalmic viscosurgical devices in phacoemulsification.
    Takahashi H; Suzuki H; Shiwa T; Sakamoto A
    J Cataract Refract Surg; 2006 Sep; 32(9):1545-8. PubMed ID: 16931270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative assessment of ophthalmic viscosurgical device retention using in vivo confocal microscopy.
    Petroll WM; Jafari M; Lane SS; Jester JV; Cavanagh HD
    J Cataract Refract Surg; 2005 Dec; 31(12):2363-8. PubMed ID: 16473232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preclinical Safety Evaluation of Ophthalmic Viscosurgical Devices in Rabbits and a Novel Mini-Pig Model.
    Leang RS; Kloft LJ; Gray B; Gwon AE; Huang LC
    Ophthalmol Ther; 2019 Mar; 8(1):101-114. PubMed ID: 30778776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed polymeric systems: New ophthalmic viscosurgical device created by mixing commercially available devices.
    Tognetto D; Cecchini P; D'Aloisio R; Lapasin R
    J Cataract Refract Surg; 2017 Jan; 43(1):109-114. PubMed ID: 28317663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retention and removal of a new viscous dispersive ophthalmic viscosurgical device during cataract surgery in animal eyes.
    Oshika T; Okamoto F; Kaji Y; Hiraoka T; Kiuchi T; Sato M; Kawana K
    Br J Ophthalmol; 2006 Apr; 90(4):485-7. PubMed ID: 16547332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Healon5 viscoadaptive formulation: Comparison to Healon and Healon GV.
    Dick HB; Krummenauer F; Augustin AJ; Pakula T; Pfeiffer N
    J Cataract Refract Surg; 2001 Feb; 27(2):320-6. PubMed ID: 11226801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Clinical Functionality of Dispersive OVDs: Improvement of One of the Properties of 3% Hyaluronic Acid and 4% Chondroitin Sulfate Combination].
    Watanabe I; Suzuki K; Nagata M; Matsushima H
    Yakugaku Zasshi; 2022; 142(4):401-411. PubMed ID: 35370196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding, retaining, and removing dispersive and pseudodispersive ophthalmic viscosurgical devices.
    Arshinoff SA; Wong E
    J Cataract Refract Surg; 2003 Dec; 29(12):2318-23. PubMed ID: 14709292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corneal endothelial cell coating during phacoemulsification using a new dispersive hyaluronic acid ophthalmic viscosurgical device.
    Kretz FT; Limberger IJ; Auffarth GU
    J Cataract Refract Surg; 2014 Nov; 40(11):1879-84. PubMed ID: 25217075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New classification of ophthalmic viscosurgical devices--2005.
    Arshinoff SA; Jafari M
    J Cataract Refract Surg; 2005 Nov; 31(11):2167-71. PubMed ID: 16412934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ophthalmic Viscosurgical Devices (OVDs) in Challenging Cases: a Review.
    Borkenstein AF; Borkenstein EM; Malyugin B
    Ophthalmol Ther; 2021 Dec; 10(4):831-843. PubMed ID: 34617249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel "Slit Side View" Method to Evaluate Fluid Dynamics during Phacoemulsification.
    Suzuki H; Igarashi T; Shiwa T; Takahashi H
    J Ophthalmol; 2018; 2018():5027238. PubMed ID: 30363725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.