BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 25229154)

  • 1. Calibration of optical tweezers for in vivo force measurements: how do different approaches compare?
    Jun Y; Tripathy SK; Narayanareddy BR; Mattson-Hoss MK; Gross SP
    Biophys J; 2014 Sep; 107(6):1474-84. PubMed ID: 25229154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond the Hookean Spring Model: Direct Measurement of Optical Forces Through Light Momentum Changes.
    Farré A; Marsà F; Montes-Usategui M
    Methods Mol Biol; 2017; 1486():41-76. PubMed ID: 27844425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying Force and Viscoelasticity Inside Living Cells Using an Active-Passive Calibrated Optical Trap.
    Ritter CM; Mas J; Oddershede L; Berg-Sørensen K
    Methods Mol Biol; 2017; 1486():513-536. PubMed ID: 27844442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexed fluctuation-dissipation-theorem calibration of optical tweezers inside living cells.
    Yan H; Johnston JF; Cahn SB; King MC; Mochrie SGJ
    Rev Sci Instrum; 2017 Nov; 88(11):113112. PubMed ID: 29195389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemodynamic forces can be accurately measured in vivo with optical tweezers.
    Harlepp S; Thalmann F; Follain G; Goetz JG
    Mol Biol Cell; 2017 Nov; 28(23):3252-3260. PubMed ID: 28904205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring Molecular Forces Using Calibrated Optical Tweezers in Living Cells.
    Hendricks AG; Goldman YE
    Methods Mol Biol; 2017; 1486():537-552. PubMed ID: 27844443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors.
    Hendricks AG; Holzbaur EL; Goldman YE
    Proc Natl Acad Sci U S A; 2012 Nov; 109(45):18447-52. PubMed ID: 23091040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Force Measurements of Subcellular Mechanics in Confinement using Optical Tweezers.
    Català-Castro F; Venturini V; Ortiz-Vásquez S; Ruprecht V; Krieg M
    J Vis Exp; 2021 Aug; (174):. PubMed ID: 34542528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How to calibrate an object-adapted optical trap for force sensing and interferometric shape tracking of asymmetric structures.
    Koch M; Rohrbach A
    Opt Express; 2014 Oct; 22(21):25242-57. PubMed ID: 25401558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo optical trapping indicates kinesin's stall force is reduced by dynein during intracellular transport.
    Blehm BH; Schroer TA; Trybus KM; Chemla YR; Selvin PR
    Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3381-6. PubMed ID: 23404705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical manipulation of single molecules in the living cell.
    Norregaard K; Jauffred L; Berg-Sørensen K; Oddershede LB
    Phys Chem Chem Phys; 2014 Jul; 16(25):12614-24. PubMed ID: 24651890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accounting for polarization in the calibration of a donut beam axial optical tweezers.
    Pollari R; Milstein JN
    PLoS One; 2018; 13(2):e0193402. PubMed ID: 29474494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells.
    Mas J; Richardson AC; Reihani SN; Oddershede LB; Berg-Sørensen K
    Phys Biol; 2013 Aug; 10(4):046006. PubMed ID: 23820071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration.
    Andersson M; Madgavkar A; Stjerndahl M; Wu Y; Tan W; Duran R; Niehren S; Mustafa K; Arvidson K; Wennerberg A
    Rev Sci Instrum; 2007 Jul; 78(7):074302. PubMed ID: 17672780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force spectroscopy with dual-trap optical tweezers: molecular stiffness measurements and coupled fluctuations analysis.
    Ribezzi-Crivellari M; Ritort F
    Biophys J; 2012 Nov; 103(9):1919-28. PubMed ID: 23199920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Counter-propagating dual-trap optical tweezers based on linear momentum conservation.
    Ribezzi-Crivellari M; Huguet JM; Ritort F
    Rev Sci Instrum; 2013 Apr; 84(4):043104. PubMed ID: 23635178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibration of dynamic holographic optical tweezers for force measurements on biomaterials.
    van der Horst A; Forde NR
    Opt Express; 2008 Dec; 16(25):20987-1003. PubMed ID: 19065239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature dependence of force, velocity, and processivity of single kinesin molecules.
    Kawaguchi K; Ishiwata S
    Biochem Biophys Res Commun; 2000 Jun; 272(3):895-9. PubMed ID: 10860848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature Quantification and Temperature Control in Optical Tweezers.
    Geldhof JJ; Malinowska AM; Wuite GJL; Peterman EJG; Heller I
    Methods Mol Biol; 2022; 2478():123-140. PubMed ID: 36063321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport.
    Leidel C; Longoria RA; Gutierrez FM; Shubeita GT
    Biophys J; 2012 Aug; 103(3):492-500. PubMed ID: 22947865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.