These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25229212)

  • 1. Quantifying light-dependent circadian disruption in humans and animal models.
    Rea MS; Figueiro MG
    Chronobiol Int; 2014 Dec; 31(10):1239-46. PubMed ID: 25229212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new approach to understanding the impact of circadian disruption on human health.
    Rea MS; Bierman A; Figueiro MG; Bullough JD
    J Circadian Rhythms; 2008 May; 6():7. PubMed ID: 18510756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian Disruption: comparing humans with mice.
    Radetsky LC; Rea MS; Bierman A; Figueiro MG
    Chronobiol Int; 2013 Oct; 30(8):1066-71. PubMed ID: 23866054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecological measurements of light exposure, activity, and circadian disruption.
    Miller D; Bierman A; Figueiro M; Schernhammer E; Rea M
    Light Res Technol; 2010 Sep; 42(3):271-284. PubMed ID: 23504497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose tolerance in mice exposed to light-dark stimulus patterns mirroring dayshift and rotating shift schedules.
    Figueiro MG; Radetsky L; Plitnick B; Rea MS
    Sci Rep; 2017 Jan; 7():40661. PubMed ID: 28079162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Food anticipatory circadian rhythms in mice entrained to long or short day photoperiods.
    Power SC; Mistlberger RE
    Physiol Behav; 2020 Aug; 222():112939. PubMed ID: 32407832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of the light cycle ablates diurnal rhythms in gastric vagal afferent mechanosensitivity.
    Kentish SJ; Christie S; Vincent A; Li H; Wittert GA; Page AJ
    Neurogastroenterol Motil; 2019 Dec; 31(12):e13711. PubMed ID: 31509314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Adjustment of Circadian Clocks to Simulated Travel to Time Zones across the Globe.
    Harrison EM; Gorman MR
    J Biol Rhythms; 2015 Dec; 30(6):557-62. PubMed ID: 26275871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-parametric photic entrainment of Djungarian hamsters with different rhythmic phenotypes.
    Schöttner K; Hauer J; Weinert D
    Chronobiol Int; 2016; 33(5):506-19. PubMed ID: 27031879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Failure of extraocular light to facilitate circadian rhythm reentrainment in humans.
    Eastman CI; Martin SK; Hebert M
    Chronobiol Int; 2000 Nov; 17(6):807-26. PubMed ID: 11128297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sleep Deprivation and Caffeine Treatment Potentiate Photic Resetting of the Master Circadian Clock in a Diurnal Rodent.
    Jha PK; Bouâouda H; Gourmelen S; Dumont S; Fuchs F; Goumon Y; Bourgin P; Kalsbeek A; Challet E
    J Neurosci; 2017 Apr; 37(16):4343-4358. PubMed ID: 28320839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entrainment of 2 subjective nights by daily light:dark:light:dark cycles in 3 rodent species.
    Gorman MR; Elliott JA
    J Biol Rhythms; 2003 Dec; 18(6):502-12. PubMed ID: 14667151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute behavioral responses to light and darkness in nocturnal Mus musculus and diurnal Arvicanthis niloticus.
    Shuboni DD; Cramm S; Yan L; Nunez AA; Smale L
    J Biol Rhythms; 2012 Aug; 27(4):299-307. PubMed ID: 22855574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of photoperiod and running wheel access on the entrainment of split circadian rhythms in hamsters.
    Rosenthal SL; Vakili MM; Evans JA; Elliott JA; Gorman MR
    BMC Neurosci; 2005 Jun; 6():41. PubMed ID: 15967036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-Dark Patterns Mirroring Shift Work Accelerate Atherosclerosis and Promote Vulnerable Lesion Phenotypes.
    Figueiro MG; Goo YH; Hogan R; Plitnick B; Lee JK; Jahangir K; Moulik M; Yechoor VK; Paul A
    J Am Heart Assoc; 2021 Jan; 10(2):e018151. PubMed ID: 33401929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wheel-running activity rhythms and masking responses in the diurnal palm squirrel,
    Kumar D; Soni SK; Kronfeld-Schor N; Singaravel M
    Chronobiol Int; 2020 Dec; 37(12):1693-1708. PubMed ID: 33044096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity rhythms and masking response in the diurnal fat sand rat under laboratory conditions.
    Barak O; Kronfeld-Schor N
    Chronobiol Int; 2013 Nov; 30(9):1123-34. PubMed ID: 23926956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring Light at Night and Melatonin Levels in Shift Workers: A Review of the Literature.
    Hunter CM; Figueiro MG
    Biol Res Nurs; 2017 Jul; 19(4):365-374. PubMed ID: 28627309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significance of nonparametric light effects in entrainment of circadian rhythms in owl monkeys (Aotus lemurinus griseimembra) by light-dark cycles.
    Rauth-Widmann B; Thiemann-Jäger A; Erkert HG
    Chronobiol Int; 1991; 8(4):251-66. PubMed ID: 1797415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraordinary behavioral entrainment following circadian rhythm bifurcation in mice.
    Harrison EM; Walbeek TJ; Sun J; Johnson J; Poonawala Q; Gorman MR
    Sci Rep; 2016 Dec; 6():38479. PubMed ID: 27929128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.