These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25229496)

  • 1. Nanoparticles and the mononuclear phagocyte system: pharmacokinetics and applications for inflammatory diseases.
    Song G; Petschauer JS; Madden AJ; Zamboni WC
    Curr Rheumatol Rev; 2014; 10(1):22-34. PubMed ID: 25229496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods and Study Designs for Characterizing the Pharmacokinetics and Pharmacodynamics of Carrier-Mediated Agents.
    Schorzman AN; Lucas AT; Kagel JR; Zamboni WC
    Methods Mol Biol; 2018; 1831():201-228. PubMed ID: 30051434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Fate of Nanoparticles In Vivo and the Strategy of Designing Stealth Nanoparticle for Drug Delivery.
    Bao J; Zhang Q; Duan T; Hu R; Tang J
    Curr Drug Targets; 2021; 22(8):922-946. PubMed ID: 33461465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mononuclear phagocytes as a target, not a barrier, for drug delivery.
    Yong SB; Song Y; Kim HJ; Ain QU; Kim YH
    J Control Release; 2017 Aug; 259():53-61. PubMed ID: 28108325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacokinetic and screening studies of the interaction between mononuclear phagocyte system and nanoparticle formulations and colloid forming drugs.
    Lucas AT; Herity LB; Kornblum ZA; Madden AJ; Gabizon A; Kabanov AV; Ajamie RT; Bender DM; Kulanthaivel P; Sanchez-Felix MV; Havel HA; Zamboni WC
    Int J Pharm; 2017 Jun; 526(1-2):443-454. PubMed ID: 28473237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competition Between Tumor and Mononuclear Phagocyte System Causing the Low Tumor Distribution of Nanoparticles and Strategies to Improve Tumor Accumulation.
    Yang B; Han X; Ji B; Lu R
    Curr Drug Deliv; 2016; 13(8):1261-1274. PubMed ID: 27086698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perfluorooctylbromide nanoparticles for ultrasound imaging and drug delivery.
    Li X; Sui Z; Li X; Xu W; Guo Q; Sun J; Jing F
    Int J Nanomedicine; 2018; 13():3053-3067. PubMed ID: 29872293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo blockade of mononuclear phagocyte system with solid nanoparticles: Efficiency and affecting factors.
    Mirkasymov AB; Zelepukin IV; Nikitin PI; Nikitin MP; Deyev SM
    J Control Release; 2021 Feb; 330():111-118. PubMed ID: 33326812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoneurotoxicity to nanoneuroprotection using biological and computational approaches.
    Iqbal A; Ahmad I; Khalid MH; Nawaz MS; Gan SH; Kamal MA
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2013; 31(3):256-84. PubMed ID: 24024521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of inorganic nanoparticles on liver fibrosis: Optimizing a double-edged sword for therapeutics.
    Tee JK; Peng F; Ho HK
    Biochem Pharmacol; 2019 Feb; 160():24-33. PubMed ID: 30529191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulating Macrophage Clearance of Nanoparticles: Comparison of Small-Molecule and Biologic Drugs as Pharmacokinetic Modifiers of Soft Nanomaterials.
    Mills JA; Humphries J; Simpson JD; Sonderegger SE; Thurecht KJ; Fletcher NL
    Mol Pharm; 2022 Nov; 19(11):4080-4097. PubMed ID: 36069540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex Factors and Challenges that Affect the Pharmacology, Safety and Efficacy of Nanocarrier Drug Delivery Systems.
    Piscatelli JA; Ban J; Lucas AT; Zamboni WC
    Pharmaceutics; 2021 Jan; 13(1):. PubMed ID: 33477395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo clearance by the mononuclear phagocyte system in humans: an overview of methods and their interpretation.
    Halma C; Daha MR; van Es LA
    Clin Exp Immunol; 1992 Jul; 89(1):1-7. PubMed ID: 1628416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angelica sinensis polysaccharide nanoparticles as a targeted drug delivery system for enhanced therapy of liver cancer.
    Zhang Y; Cui Z; Mei H; Xu J; Zhou T; Cheng F; Wang K
    Carbohydr Polym; 2019 Sep; 219():143-154. PubMed ID: 31151511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serum albumin 'camouflage' of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics.
    Pitek AS; Jameson SA; Veliz FA; Shukla S; Steinmetz NF
    Biomaterials; 2016 May; 89():89-97. PubMed ID: 26950168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent trends in platelet membrane-cloaked nanoparticles for application of inflammatory diseases.
    Fang Z; Fang J; Gao C; Gao R; Lin P; Yu W
    Drug Deliv; 2022 Dec; 29(1):2805-2814. PubMed ID: 36047245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rediscovery of mononuclear phagocyte system blockade for nanoparticle drug delivery.
    Zelepukin IV; Shevchenko KG; Deyev SM
    Nat Commun; 2024 May; 15(1):4366. PubMed ID: 38777821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Strategies in the Design of Nanomedicines to Oppose Uptake by the Mononuclear Phagocyte System and Enhance Cancer Therapeutic Efficacy.
    Zhou Y; Dai Z
    Chem Asian J; 2018 Nov; 13(22):3333-3340. PubMed ID: 29441706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation.
    Shi J; Xiao Z; Kamaly N; Farokhzad OC
    Acc Chem Res; 2011 Oct; 44(10):1123-34. PubMed ID: 21692448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.