These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 25229637)
1. High frequency dielectrophoretic response of microalgae over time. Hadady H; Wong JJ; Hiibel SR; Redelman D; Geiger EJ Electrophoresis; 2014 Dec; 35(24):3533-40. PubMed ID: 25229637 [TBL] [Abstract][Full Text] [Related]
2. Separation of microalgae with different lipid contents by dielectrophoresis. Deng YL; Chang JS; Juang YJ Bioresour Technol; 2013 May; 135():137-41. PubMed ID: 23265825 [TBL] [Abstract][Full Text] [Related]
3. Liposomes as a model for the study of high frequency dielectrophoresis. Hadady H; Montiel C; Wetta D; Geiger EJ Electrophoresis; 2015 Jul; 36(13):1423-8. PubMed ID: 25820457 [TBL] [Abstract][Full Text] [Related]
4. Digital quantification and selection of high-lipid-producing microalgae through a lateral dielectrophoresis-based microfluidic platform. Han SI; Kim HS; Han KH; Han A Lab Chip; 2019 Dec; 19(24):4128-4138. PubMed ID: 31755503 [TBL] [Abstract][Full Text] [Related]
5. An integrated microfluidic device for the high-throughput screening of microalgal cell culture conditions that induce high growth rate and lipid content. Bae S; Kim CW; Choi JS; Yang JW; Seo TS Anal Bioanal Chem; 2013 Nov; 405(29):9365-74. PubMed ID: 24170268 [TBL] [Abstract][Full Text] [Related]
6. Raman spectroscopy compatible PDMS droplet microfluidic culture and analysis platform towards on-chip lipidomics. Kim HS; Waqued SC; Nodurft DT; Devarenne TP; Yakovlev VV; Han A Analyst; 2017 Apr; 142(7):1054-1060. PubMed ID: 28294227 [TBL] [Abstract][Full Text] [Related]
7. A separability parameter for dielectrophoretic cell separation. Sabuncu AC; Beskok A Electrophoresis; 2013 Apr; 34(7):1051-8. PubMed ID: 23348751 [TBL] [Abstract][Full Text] [Related]
9. High-throughput dynamical analysis of dielectrophoretic frequency dispersion of single cells based on deflected flow streamlines. Torres-Castro K; Honrado C; Varhue WB; Farmehini V; Swami NS Anal Bioanal Chem; 2020 Jun; 412(16):3847-3857. PubMed ID: 32128645 [TBL] [Abstract][Full Text] [Related]
10. Differential dielectric responses of chondrocyte and Jurkat cells in electromanipulation buffers. Sabuncu AC; Asmar AJ; Stacey MW; Beskok A Electrophoresis; 2015 Jul; 36(13):1499-506. PubMed ID: 25958778 [TBL] [Abstract][Full Text] [Related]
11. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related]
12. Measurement of dielectric properties of cells at single-cell resolution using electrorotation. Li Y; Huang C; Han SI; Han A Biomed Microdevices; 2022 Jun; 24(2):23. PubMed ID: 35771277 [TBL] [Abstract][Full Text] [Related]
13. Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research. Park JW; Na SC; Nguyen TQ; Paik SM; Kang M; Hong D; Choi IS; Lee JH; Jeon NL Biotechnol Bioeng; 2015 Mar; 112(3):494-501. PubMed ID: 25220860 [TBL] [Abstract][Full Text] [Related]
14. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis. Cetin B; Li D Electrophoresis; 2010 Sep; 31(18):3035-43. PubMed ID: 20872609 [TBL] [Abstract][Full Text] [Related]
16. Development of flow through dielectrophoresis microfluidic chips for biofuel production: Sorting and detection of microalgae with different lipid contents. Deng YL; Kuo MY; Juang YJ Biomicrofluidics; 2014 Nov; 8(6):064120. PubMed ID: 25553195 [TBL] [Abstract][Full Text] [Related]
17. Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells. Gagnon ZR Electrophoresis; 2011 Sep; 32(18):2466-87. PubMed ID: 21922493 [TBL] [Abstract][Full Text] [Related]
18. Two-dimensional numerical modeling for separation of deformable cells using dielectrophoresis. Ye T; Li H; Lam KY Electrophoresis; 2015 Feb; 36(3):378-85. PubMed ID: 24981085 [TBL] [Abstract][Full Text] [Related]
19. Monitoring the permeabilization of a single cell in a microfluidic device, through the estimation of its dielectric properties based on combined dielectrophoresis and electrorotation in situ experiments. Trainito CI; Français O; Le Pioufle B Electrophoresis; 2015 May; 36(9-10):1115-22. PubMed ID: 25641658 [TBL] [Abstract][Full Text] [Related]
20. Microfluidic device for the Separation of non-metastatic (MCF-7) and non-tumor (MCF-10A) breast cancer cells using AC Dielectrophoresis. Ur Rehman A; Zabibah RS; Kharratian S; Mustafa A J Vis Exp; 2022 Aug; (186):. PubMed ID: 36036617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]