These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 25229688)
1. A new supervised over-sampling algorithm with application to protein-nucleotide binding residue prediction. Hu J; He X; Yu DJ; Yang XB; Yang JY; Shen HB PLoS One; 2014; 9(9):e107676. PubMed ID: 25229688 [TBL] [Abstract][Full Text] [Related]
2. Boosting Granular Support Vector Machines for the Accurate Prediction of Protein-Nucleotide Binding Sites. Zhu YH; Hu J; Qi Y; Song XN; Yu DJ Comb Chem High Throughput Screen; 2019; 22(7):455-469. PubMed ID: 31553288 [TBL] [Abstract][Full Text] [Related]
3. Enhancing protein-vitamin binding residues prediction by multiple heterogeneous subspace SVMs ensemble. Yu DJ; Hu J; Yan H; Yang XB; Yang JY; Shen HB BMC Bioinformatics; 2014 Sep; 15(1):297. PubMed ID: 25189131 [TBL] [Abstract][Full Text] [Related]
4. DNAPred: Accurate Identification of DNA-Binding Sites from Protein Sequence by Ensembled Hyperplane-Distance-Based Support Vector Machines. Zhu YH; Hu J; Song XN; Yu DJ J Chem Inf Model; 2019 Jun; 59(6):3057-3071. PubMed ID: 30943723 [TBL] [Abstract][Full Text] [Related]
5. Predicting Protein-DNA Binding Residues by Weightedly Combining Sequence-Based Features and Boosting Multiple SVMs. Hu J; Li Y; Zhang M; Yang X; Shen HB; Yu DJ IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1389-1398. PubMed ID: 27740495 [TBL] [Abstract][Full Text] [Related]
6. Protein-ligand binding residue prediction enhancement through hybrid deep heterogeneous learning of sequence and structure data. Xia CQ; Pan X; Shen HB Bioinformatics; 2020 May; 36(10):3018-3027. PubMed ID: 32091580 [TBL] [Abstract][Full Text] [Related]
7. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique. Zhao X; Ning Q; Chai H; Ma Z J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215 [TBL] [Abstract][Full Text] [Related]
8. Constructing query-driven dynamic machine learning model with application to protein-ligand binding sites prediction. Yu DJ; Hu J; Li QM; Tang ZM; Yang JY; Shen HB IEEE Trans Nanobioscience; 2015 Jan; 14(1):45-58. PubMed ID: 25730499 [TBL] [Abstract][Full Text] [Related]
9. Prediction of Protein-Protein Interaction Sites with Machine-Learning-Based Data-Cleaning and Post-Filtering Procedures. Liu GH; Shen HB; Yu DJ J Membr Biol; 2016 Apr; 249(1-2):141-53. PubMed ID: 26563228 [TBL] [Abstract][Full Text] [Related]
10. A Cascade Random Forests Algorithm for Predicting Protein-Protein Interaction Sites. Wei ZS; Yang JY; Shen HB; Yu DJ IEEE Trans Nanobioscience; 2015 Oct; 14(7):746-60. PubMed ID: 26441427 [TBL] [Abstract][Full Text] [Related]
11. Designing template-free predictor for targeting protein-ligand binding sites with classifier ensemble and spatial clustering. Yu DJ; Hu J; Yang J; Shen HB; Tang J; Yang JY IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):994-1008. PubMed ID: 24334392 [TBL] [Abstract][Full Text] [Related]
12. Incorporating organelle correlations into semi-supervised learning for protein subcellular localization prediction. Xu YY; Yang F; Shen HB Bioinformatics; 2016 Jul; 32(14):2184-92. PubMed ID: 27153655 [TBL] [Abstract][Full Text] [Related]
13. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features. Zhou H; Yang Y; Shen HB Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784 [TBL] [Abstract][Full Text] [Related]
14. Positive-unlabelled learning of glycosylation sites in the human proteome. Li F; Zhang Y; Purcell AW; Webb GI; Chou KC; Lithgow T; Li C; Song J BMC Bioinformatics; 2019 Mar; 20(1):112. PubMed ID: 30841845 [TBL] [Abstract][Full Text] [Related]
15. CLIPS-1D: analysis of multiple sequence alignments to deduce for residue-positions a role in catalysis, ligand-binding, or protein structure. Janda JO; Busch M; Kück F; Porfenenko M; Merkl R BMC Bioinformatics; 2012 Apr; 13():55. PubMed ID: 22480135 [TBL] [Abstract][Full Text] [Related]
16. Accurate prediction of protein-ATP binding residues using position-specific frequency matrix. Hu J; Zheng LL; Bai YS; Zhang KW; Yu DJ; Zhang GJ Anal Biochem; 2021 Aug; 626():114241. PubMed ID: 33971164 [TBL] [Abstract][Full Text] [Related]
17. SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues. Yang X; Wang J; Sun J; Liu R PLoS One; 2015; 10(7):e0133260. PubMed ID: 26176857 [TBL] [Abstract][Full Text] [Related]
18. Improving accuracy of protein contact prediction using balanced network deconvolution. Sun HP; Huang Y; Wang XF; Zhang Y; Shen HB Proteins; 2015 Mar; 83(3):485-96. PubMed ID: 25524593 [TBL] [Abstract][Full Text] [Related]
19. EPuL: An Enhanced Positive-Unlabeled Learning Algorithm for the Prediction of Pupylation Sites. Nan X; Bao L; Zhao X; Zhao X; Sangaiah AK; Wang GG; Ma Z Molecules; 2017 Sep; 22(9):. PubMed ID: 28872627 [TBL] [Abstract][Full Text] [Related]
20. BindWeb: A web server for ligand binding residue and pocket prediction from protein structures. Xia Y; Xia C; Pan X; Shen HB Protein Sci; 2022 Dec; 31(12):e4462. PubMed ID: 36190332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]