These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 25229994)

  • 21. NoGOA: predicting noisy GO annotations using evidences and sparse representation.
    Yu G; Lu C; Wang J
    BMC Bioinformatics; 2017 Jul; 18(1):350. PubMed ID: 28732468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GOntoSim: a semantic similarity measure based on LCA and common descendants.
    Kamran AB; Naveed H
    Sci Rep; 2022 Mar; 12(1):3818. PubMed ID: 35264663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NoisyGOA: Noisy GO annotations prediction using taxonomic and semantic similarity.
    Lu C; Wang J; Zhang Z; Yang P; Yu G
    Comput Biol Chem; 2016 Dec; 65():203-211. PubMed ID: 27670689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NMFGO: Gene Function Prediction via Nonnegative Matrix Factorization with Gene Ontology.
    Yu G; Wang K; Fu G; Guo M; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):238-249. PubMed ID: 30059316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-Factored Gene-Gene Proximity Measures Exploiting Biological Knowledge Extracted from Gene Ontology: Application in Gene Clustering.
    Acharya S; Saha S; Pradhan P
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):207-219. PubMed ID: 29994130
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating Functional Annotations of Enzymes Using the Gene Ontology.
    Holliday GL; Davidson R; Akiva E; Babbitt PC
    Methods Mol Biol; 2017; 1446():111-132. PubMed ID: 27812939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Semantic Similarity in the Gene Ontology.
    Pesquita C
    Methods Mol Biol; 2017; 1446():161-173. PubMed ID: 27812942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NewGOA: Predicting New GO Annotations of Proteins by Bi-Random Walks on a Hybrid Graph.
    Yu G; Fu G; Wang J; Zhao Y
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1390-1402. PubMed ID: 28641268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measuring gene functional similarity based on group-wise comparison of GO terms.
    Teng Z; Guo M; Liu X; Dai Q; Wang C; Xuan P
    Bioinformatics; 2013 Jun; 29(11):1424-32. PubMed ID: 23572412
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GOcats: A tool for categorizing Gene Ontology into subgraphs of user-defined concepts.
    Hinderer EW; Moseley HNB
    PLoS One; 2020; 15(6):e0233311. PubMed ID: 32525872
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A New Path Based Hybrid Measure for Gene Ontology Similarity.
    Bandyopadhyay S; Mallick K
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(1):116-27. PubMed ID: 26355512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A-DaGO-Fun: an adaptable Gene Ontology semantic similarity-based functional analysis tool.
    Mazandu GK; Chimusa ER; Mbiyavanga M; Mulder NJ
    Bioinformatics; 2016 Feb; 32(3):477-9. PubMed ID: 26476781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploiting ontology graph for predicting sparsely annotated gene function.
    Wang S; Cho H; Zhai C; Berger B; Peng J
    Bioinformatics; 2015 Jun; 31(12):i357-64. PubMed ID: 26072504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bi-directional semantic similarity for gene ontology to optimize biological and clinical analyses.
    Bien SJ; Park CH; Shim HJ; Yang W; Kim J; Kim JH
    J Am Med Inform Assoc; 2012; 19(5):765-74. PubMed ID: 22374934
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GOGO: An improved algorithm to measure the semantic similarity between gene ontology terms.
    Zhao C; Wang Z
    Sci Rep; 2018 Oct; 8(1):15107. PubMed ID: 30305653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GO2Vec: transforming GO terms and proteins to vector representations via graph embeddings.
    Zhong X; Kaalia R; Rajapakse JC
    BMC Genomics; 2019 Dec; 20(Suppl 9):918. PubMed ID: 31874639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimal Threshold Determination for Interpreting Semantic Similarity and Particularity: Application to the Comparison of Gene Sets and Metabolic Pathways Using GO and ChEBI.
    Bettembourg C; Diot C; Dameron O
    PLoS One; 2015; 10(7):e0133579. PubMed ID: 26230274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring Approaches for Detecting Protein Functional Similarity within an Orthology-based Framework.
    Weichenberger CX; Palermo A; Pramstaller PP; Domingues FS
    Sci Rep; 2017 Mar; 7(1):381. PubMed ID: 28336965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correlating information contents of gene ontology terms to infer semantic similarity of gene products.
    Gan M
    Comput Math Methods Med; 2014; 2014():891842. PubMed ID: 24963342
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An improved method for scoring protein-protein interactions using semantic similarity within the gene ontology.
    Jain S; Bader GD
    BMC Bioinformatics; 2010 Nov; 11():562. PubMed ID: 21078182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.