These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 25229994)

  • 41. Graph embeddings on gene ontology annotations for protein-protein interaction prediction.
    Zhong X; Rajapakse JC
    BMC Bioinformatics; 2020 Dec; 21(Suppl 16):560. PubMed ID: 33323115
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative Analysis of Unsupervised Protein Similarity Prediction Based on Graph Embedding.
    Zhang Y; Wang Z; Wang S; Shang J
    Front Genet; 2021; 12():744334. PubMed ID: 34630534
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluating the significance of protein functional similarity based on gene ontology.
    Konopka BM; Golda T; Kotulska M
    J Comput Biol; 2014 Nov; 21(11):809-22. PubMed ID: 25188814
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Argot2: a large scale function prediction tool relying on semantic similarity of weighted Gene Ontology terms.
    Falda M; Toppo S; Pescarolo A; Lavezzo E; Di Camillo B; Facchinetti A; Cilia E; Velasco R; Fontana P
    BMC Bioinformatics; 2012 Mar; 13 Suppl 4(Suppl 4):S14. PubMed ID: 22536960
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exploring information from the topology beneath the Gene Ontology terms to improve semantic similarity measures.
    Zhang SB; Lai JH
    Gene; 2016 Jul; 586(1):148-57. PubMed ID: 27080954
    [TBL] [Abstract][Full Text] [Related]  

  • 46. HashGO: hashing gene ontology for protein function prediction.
    Yu G; Zhao Y; Lu C; Wang J
    Comput Biol Chem; 2017 Dec; 71():264-273. PubMed ID: 29031869
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Learning representations for gene ontology terms by jointly encoding graph structure and textual node descriptors.
    Zhao L; Sun H; Cao X; Wen N; Wang J; Wang C
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901452
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CvManGO, a method for leveraging computational predictions to improve literature-based Gene Ontology annotations.
    Park J; Costanzo MC; Balakrishnan R; Cherry JM; Hong EL
    Database (Oxford); 2012; 2012():bas001. PubMed ID: 22434836
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Best Practices in Manual Annotation with the Gene Ontology.
    Poux S; Gaudet P
    Methods Mol Biol; 2017; 1446():41-54. PubMed ID: 27812934
    [TBL] [Abstract][Full Text] [Related]  

  • 50. TANGO: A GO-Term Embedding Based Method for Protein Semantic Similarity Prediction.
    Wang H; Zheng H; Chen DZ
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):694-706. PubMed ID: 35030084
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Information theory applied to the sparse gene ontology annotation network to predict novel gene function.
    Tao Y; Sam L; Li J; Friedman C; Lussier YA
    Bioinformatics; 2007 Jul; 23(13):i529-38. PubMed ID: 17646340
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anc2vec: embedding gene ontology terms by preserving ancestors relationships.
    Edera AA; Milone DH; Stegmayer G
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136916
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Term Matrix: a novel Gene Ontology annotation quality control system based on ontology term co-annotation patterns.
    Wood V; Carbon S; Harris MA; Lock A; Engel SR; Hill DP; Van Auken K; Attrill H; Feuermann M; Gaudet P; Lovering RC; Poux S; Rutherford KM; Mungall CJ
    Open Biol; 2020 Sep; 10(9):200149. PubMed ID: 32875947
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluating the effect of annotation size on measures of semantic similarity.
    Kulmanov M; Hoehndorf R
    J Biomed Semantics; 2017 Feb; 8(1):7. PubMed ID: 28193260
    [TBL] [Abstract][Full Text] [Related]  

  • 55. GOChase-II: correcting semantic inconsistencies from Gene Ontology-based annotations for gene products.
    Park YR; Kim J; Lee HW; Yoon YJ; Kim JH
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S40. PubMed ID: 21342572
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improving protein function prediction using protein sequence and GO-term similarities.
    Makrodimitris S; van Ham RCHJ; Reinders MJT
    Bioinformatics; 2019 Apr; 35(7):1116-1124. PubMed ID: 30169569
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel gene functional similarity calculation model by utilizing the specificity of terms and relationships in gene ontology.
    Tian Z; Fang H; Ye Y; Zhu Z
    BMC Bioinformatics; 2022 Jan; 23(Suppl 1):47. PubMed ID: 35057740
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gene ontology based transfer learning for protein subcellular localization.
    Mei S; Fei W; Zhou S
    BMC Bioinformatics; 2011 Feb; 12():44. PubMed ID: 21284890
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative analysis of gene ontology-based semantic similarity measurements for the application of identifying essential proteins.
    Xue X; Zhang W; Fan A
    PLoS One; 2023; 18(4):e0284274. PubMed ID: 37083829
    [TBL] [Abstract][Full Text] [Related]  

  • 60. TransformerGO: predicting protein-protein interactions by modelling the attention between sets of gene ontology terms.
    Ieremie I; Ewing RM; Niranjan M
    Bioinformatics; 2022 Apr; 38(8):2269-2277. PubMed ID: 35176146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.