These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 25230089)
1. 3D-electrode architectures for enhanced direct bioelectrocatalysis of pyrroloquinoline quinone-dependent glucose dehydrogenase. Sarauli D; Peters K; Xu C; Schulz B; Fattakhova-Rohlfing D; Lisdat F ACS Appl Mater Interfaces; 2014 Oct; 6(20):17887-93. PubMed ID: 25230089 [TBL] [Abstract][Full Text] [Related]
2. A multilayered sulfonated polyaniline network with entrapped pyrroloquinoline quinone-dependent glucose dehydrogenase: tunable direct bioelectrocatalysis. Sarauli D; Xu C; Dietzel B; Schulz B; Lisdat F J Mater Chem B; 2014 Jun; 2(21):3196-3203. PubMed ID: 32261581 [TBL] [Abstract][Full Text] [Related]
3. Differently substituted sulfonated polyanilines: the role of polymer compositions in electron transfer with pyrroloquinoline quinone-dependent glucose dehydrogenase. Sarauli D; Xu C; Dietzel B; Schulz B; Lisdat F Acta Biomater; 2013 Sep; 9(9):8290-8. PubMed ID: 23777884 [TBL] [Abstract][Full Text] [Related]
4. Towards a novel bioelectrocatalytic platform based on "wiring" of pyrroloquinoline quinone-dependent glucose dehydrogenase with an electrospun conductive polymeric fiber architecture. Gladisch J; Sarauli D; Schäfer D; Dietzel B; Schulz B; Lisdat F Sci Rep; 2016 Jan; 6():19858. PubMed ID: 26822141 [TBL] [Abstract][Full Text] [Related]
5. Anchoring PQQ-Glucose Dehydrogenase with Electropolymerized Azines for the Most Efficient Bioelectrocatalysis. Komkova MA; Orlov AK; Galushin AA; Andreev EA; Karyakin AA Anal Chem; 2021 Sep; 93(35):12116-12121. PubMed ID: 34431658 [TBL] [Abstract][Full Text] [Related]
7. Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode. Zeng T; Leimkühler S; Koetz J; Wollenberger U ACS Appl Mater Interfaces; 2015 Sep; 7(38):21487-94. PubMed ID: 26357959 [TBL] [Abstract][Full Text] [Related]
8. Modification of carbon nanotube electrodes with 1-pyrenebutanoic acid, succinimidyl ester for enhanced bioelectrocatalysis. Strack G; Nichols R; Atanassov P; Luckarift HR; Johnson GR Methods Mol Biol; 2013; 1051():217-28. PubMed ID: 23934807 [TBL] [Abstract][Full Text] [Related]
9. Electrical contacting of glucose dehydrogenase by the reconstitution of a pyrroloquinoline quinone-functionalized polyaniline film associated with an Au-electrode: an in situ electrochemical SPR study. Raitman OA; Patolsky F; Katz E; Willner I Chem Commun (Camb); 2002 Sep; (17):1936-7. PubMed ID: 12271682 [TBL] [Abstract][Full Text] [Related]
10. Heterogeneous reconstitution of the PQQ-dependent glucose dehydrogenase immobilized on an electrode: a sensitive strategy for PQQ detection down to picomolar levels. Zhang L; Miranda-Castro R; Stines-Chaumeil C; Mano N; Xu G; Mavré F; Limoges B Anal Chem; 2014 Feb; 86(4):2257-67. PubMed ID: 24476605 [TBL] [Abstract][Full Text] [Related]
11. PQQ as redox shuttle for quinoprotein glucose dehydrogenase. Jin W; Wollenberger U; Scheller FW Biol Chem; 1998; 379(8-9):1207-11. PubMed ID: 9792456 [TBL] [Abstract][Full Text] [Related]
12. Biofuel cells based on direct enzyme-electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials. Scherbahn V; Putze MT; Dietzel B; Heinlein T; Schneider JJ; Lisdat F Biosens Bioelectron; 2014 Nov; 61():631-8. PubMed ID: 24967753 [TBL] [Abstract][Full Text] [Related]
13. Aqueous polythiophene electrosynthesis: A new route to an efficient electrode coupling of PQQ-dependent glucose dehydrogenase for sensing and bioenergetic applications. Fusco G; Göbel G; Zanoni R; Bracciale MP; Favero G; Mazzei F; Lisdat F Biosens Bioelectron; 2018 Jul; 112():8-17. PubMed ID: 29684749 [TBL] [Abstract][Full Text] [Related]
14. Improvement of direct bioelectrocatalysis by cellobiose dehydrogenase on screen printed graphite electrodes using polyaniline modification. Trashin SA; Haltrich D; Ludwig R; Gorton L; Karyakin AA Bioelectrochemistry; 2009 Sep; 76(1-2):87-92. PubMed ID: 19570729 [TBL] [Abstract][Full Text] [Related]
15. Rapid Entrapment of Phenazine Ethosulfate within a Polyelectrolyte Complex on Electrodes for Efficient NAD Lim K; Lee YS; Simoska O; Dong F; Sima M; Stewart RJ; Minteer SD ACS Appl Mater Interfaces; 2021 Mar; 13(9):10942-10951. PubMed ID: 33646753 [TBL] [Abstract][Full Text] [Related]
16. Time-resolved UV-visible spectroelectrochemistry using transparent 3D-mesoporous nanocrystalline ITO electrodes. Renault C; Harris KD; Brett MJ; Balland V; Limoges B Chem Commun (Camb); 2011 Feb; 47(6):1863-5. PubMed ID: 21127815 [TBL] [Abstract][Full Text] [Related]
17. Pyrroloquinoline quinone-dependent glucose dehydrogenase bioelectrodes based on one-step electrochemical entrapment over single-wall carbon nanotubes. Quintero-Jaime AF; Conzuelo F; Cazorla-Amorós D; Morallón E Talanta; 2021 Sep; 232():122386. PubMed ID: 34074388 [TBL] [Abstract][Full Text] [Related]
19. Integration of Enzymes in Polyaniline-Sensitized 3D Inverse Opal TiO Riedel M; Lisdat F ACS Appl Mater Interfaces; 2018 Jan; 10(1):267-277. PubMed ID: 29220151 [TBL] [Abstract][Full Text] [Related]
20. Use of microperoxidase-11 to functionalize tin dioxide electrodes for the optical and electrochemical sensing of hydrogen peroxide. Astuti Y; Topoglidis E; Durrant JR Anal Chim Acta; 2011 Feb; 686(1-2):126-32. PubMed ID: 21237318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]