BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 25230105)

  • 1. Mathematical modeling of PLGA microparticles: from polymer degradation to drug release.
    Casalini T; Rossi F; Lazzari S; Perale G; Masi M
    Mol Pharm; 2014 Nov; 11(11):4036-48. PubMed ID: 25230105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of particle size, polydispersity and polymer degradation on progesterone release from PLGA microparticles: Experimental and mathematical modeling.
    Busatto C; Pesoa J; Helbling I; Luna J; Estenoz D
    Int J Pharm; 2018 Jan; 536(1):360-369. PubMed ID: 29217474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PLGA-based drug delivery systems: importance of the type of drug and device geometry.
    Klose D; Siepmann F; Elkharraz K; Siepmann J
    Int J Pharm; 2008 Apr; 354(1-2):95-103. PubMed ID: 18055140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Mechanistic Model for Acidic Drug Release Using Microspheres Made of PLGA 50:50.
    Sevim K; Pan J
    Mol Pharm; 2016 Aug; 13(8):2729-35. PubMed ID: 27398973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment.
    Siepmann J; Elkharraz K; Siepmann F; Klose D
    Biomacromolecules; 2005; 6(4):2312-9. PubMed ID: 16004477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the type of release medium on drug release from PLGA-based microparticles: experiment and theory.
    Faisant N; Akiki J; Siepmann F; Benoit JP; Siepmann J
    Int J Pharm; 2006 May; 314(2):189-97. PubMed ID: 16510257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres--a review.
    Ford Versypt AN; Pack DW; Braatz RD
    J Control Release; 2013 Jan; 165(1):29-37. PubMed ID: 23103455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of drug type on the degradation rate of PLGA matrices.
    Siegel SJ; Kahn JB; Metzger K; Winey KI; Werner K; Dan N
    Eur J Pharm Biopharm; 2006 Nov; 64(3):287-93. PubMed ID: 16949804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How porosity and size affect the drug release mechanisms from PLGA-based microparticles.
    Klose D; Siepmann F; Elkharraz K; Krenzlin S; Siepmann J
    Int J Pharm; 2006 May; 314(2):198-206. PubMed ID: 16504431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Derivation of an Analytical Solution to a Reaction-Diffusion Model for Autocatalytic Degradation and Erosion in Polymer Microspheres.
    Ford Versypt AN; Arendt PD; Pack DW; Braatz RD
    PLoS One; 2015; 10(8):e0135506. PubMed ID: 26284787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of hydrophilic drug from biodegradable polymer blends.
    Tan LP; Hidayat A; Lao LL; Quah LF
    J Biomater Sci Polym Ed; 2009; 20(10):1381-92. PubMed ID: 19622278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PLGA-based microparticles: elucidation of mechanisms and a new, simple mathematical model quantifying drug release.
    Faisant N; Siepmann J; Benoit JP
    Eur J Pharm Sci; 2002 May; 15(4):355-66. PubMed ID: 11988397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for hydrolytic degradation and erosion of biodegradable polymers.
    Sevim K; Pan J
    Acta Biomater; 2018 Jan; 66():192-199. PubMed ID: 29128536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical model of erosion and macromolecular drug release from biodegrading microspheres.
    Batycky RP; Hanes J; Langer R; Edwards DA
    J Pharm Sci; 1997 Dec; 86(12):1464-77. PubMed ID: 9423163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation behaviour in vitro for poly(D,L-lactide-co-glycolide) as drug carrier.
    Lee JS; Chae GS; Kim MS; Cho SH; Lee HB; Khang G
    Biomed Mater Eng; 2004; 14(2):185-92. PubMed ID: 15156109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of solvent on drug release and a spray-coated matrix of a sirolimus-eluting stent coated with poly(lactic-co-glycolic acid).
    Choi J; Jang BN; Park BJ; Joung YK; Han DK
    Langmuir; 2014 Aug; 30(33):10098-106. PubMed ID: 25090045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation, characterization, and in vitro evaluation of physostigmine-loaded poly(ortho ester) and poly(ortho ester)/poly(D,L-lactide-co-glycolide) blend microspheres fabricated by spray drying.
    Wang L; Chaw CS; Yang YY; Moochhala SM; Zhao B; Ng S; Heller J
    Biomaterials; 2004 Jul; 25(16):3275-82. PubMed ID: 14980422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of mean diameter and polydispersity of PLG microspheres on drug release: experiment and theory.
    Berchane NS; Carson KH; Rice-Ficht AC; Andrews MJ
    Int J Pharm; 2007 Jun; 337(1-2):118-26. PubMed ID: 17289316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-based optimization of drug release rate from a size distributed population of biodegradable polymer carriers.
    Vasileiadou AC; Karageorgos FF; Kiparissides C
    Eur J Pharm Biopharm; 2023 May; 186():112-131. PubMed ID: 36870398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High glycolic poly (DL lactic co glycolic acid) nanoparticles for controlled release of meropenem.
    Nandakumar V; Geetha V; Chittaranjan S; Doble M
    Biomed Pharmacother; 2013 Jun; 67(5):431-6. PubMed ID: 23583192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.