These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25230361)

  • 1. Functional mapping of the zebrafish early embryo proteome and transcriptome.
    Alli Shaik A; Wee S; Li RH; Li Z; Carney TJ; Mathavan S; Gunaratne J
    J Proteome Res; 2014 Dec; 13(12):5536-50. PubMed ID: 25230361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Survey of the Impact of Deyolking on Biological Processes Covered by Shotgun Proteomic Analyses of Zebrafish Embryos.
    Rahlouni F; Szarka S; Shulaev V; Prokai L
    Zebrafish; 2015 Dec; 12(6):398-407. PubMed ID: 26439676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics Analysis of Early Developmental Stages of Zebrafish Embryos.
    Purushothaman K; Das PP; Presslauer C; Lim TK; Johansen SD; Lin Q; Babiak I
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31861170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zebrafish brain proteomics reveals central proteins involved in neurodegeneration.
    Gebriel M; Prabhudesai S; Uleberg KE; Larssen E; Piston D; Bjørnstad AH; Møller SG
    J Neurosci Res; 2014 Jan; 92(1):104-15. PubMed ID: 24123299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of RNA-Binding Protein Landscapes Across Zebrafish Embryonic Transcriptome via iCLIP Approach.
    Despic V
    Methods Mol Biol; 2021; 2218():331-345. PubMed ID: 33606243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome dynamics and diversity in the early zebrafish embryo.
    Aanes H; Collas P; Aleström P
    Brief Funct Genomics; 2014 Mar; 13(2):95-105. PubMed ID: 24335756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online automated in vivo zebrafish phosphoproteomics: from large-scale analysis down to a single embryo.
    Lemeer S; Pinkse MW; Mohammed S; van Breukelen B; den Hertog J; Slijper M; Heck AJ
    J Proteome Res; 2008 Apr; 7(4):1555-64. PubMed ID: 18307296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study of proteomic profile of Danio rerio embryos using one-dimensional electrophoresis and mass spectrometry].
    Kisrieva IuS; Petushkova NA; Chernobrovkin AS; Larina OV; Trifonova OP; Samenkova NF; Kuznetsova GP; Karuzina II; Kashirtseva VN; Beliaeva NF; Lisitsa AV
    Biomed Khim; 2011; 57(6):593-603. PubMed ID: 22359915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding the zebrafish embryo proteome using multiple fractionation approaches and tandem mass spectrometry.
    Lößner C; Wee S; Ler SG; Li RH; Carney T; Blackstock W; Gunaratne J
    Proteomics; 2012 Jun; 12(11):1879-82. PubMed ID: 22653788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome profile of zebrafish Danio rerio olfactory bulb based on two-dimensional gel electrophoresis matrix-assisted laser desorption/ionization MS/MS analysis.
    Singh SK; Saxena S; Meena Lakshmi MG; Saxena P; Idris MM
    Zebrafish; 2011 Dec; 8(4):183-9. PubMed ID: 22181661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome analysis of a single zebrafish embryo using three different digestion strategies coupled with liquid chromatography-tandem mass spectrometry.
    Lin Y; Chen Y; Yang X; Xu D; Liang S
    Anal Biochem; 2009 Nov; 394(2):177-85. PubMed ID: 19643073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of hoxb1b downstream genes: hoxb1b as a regulatory factor controlling transcriptional networks and cell movement during zebrafish gastrulation.
    van den Akker WM; Durston AJ; Spaink HP
    Int J Dev Biol; 2010; 54(1):55-62. PubMed ID: 19876844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cystic fibrosis transmembrane conductance regulator (CFTR) regulates embryonic organizer formation during zebrafish early embryogenesis.
    Liu Y; Lin Z; Sun H
    Int J Dev Biol; 2020; 64(7-8-9):409-413. PubMed ID: 33063835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the zebrafish proteome during embryonic development.
    Lucitt MB; Price TS; Pizarro A; Wu W; Yocum AK; Seiler C; Pack MA; Blair IA; Fitzgerald GA; Grosser T
    Mol Cell Proteomics; 2008 May; 7(5):981-94. PubMed ID: 18212345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel deep transcriptome and proteome analysis of zebrafish larvae.
    Palmblad M; Henkel CV; Dirks RP; Meijer AH; Deelder AM; Spaink HP
    BMC Res Notes; 2013 Oct; 6():428. PubMed ID: 24156766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free quantitative analysis of the membrane proteome of Bace1 protease knock-out zebrafish brains.
    Hogl S; van Bebber F; Dislich B; Kuhn PH; Haass C; Schmid B; Lichtenthaler SF
    Proteomics; 2013 May; 13(9):1519-27. PubMed ID: 23457027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatio-temporal expression of chromogranin A during zebrafish embryogenesis.
    Xie J; Wang WQ; Liu TX; Deng M; Ning G
    J Endocrinol; 2008 Sep; 198(3):451-8. PubMed ID: 18586978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic fingerprinting reveals developmental regulation of metabolites during early zebrafish embryogenesis.
    Papan C; Chen L
    OMICS; 2009 Oct; 13(5):397-405. PubMed ID: 19630505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of dynamic proteomic profiles between in vivo and in vitro produced mouse embryos during postimplantation period.
    Nie J; An L; Miao K; Hou Z; Yu Y; Tan K; Sui L; He S; Liu Q; Lei X; Wu Z; Tian J
    J Proteome Res; 2013 Sep; 12(9):3843-56. PubMed ID: 23841881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of muscle fibre-type diversity during embryonic development: the zebrafish paradigm.
    Jackson HE; Ingham PW
    Mech Dev; 2013; 130(9-10):447-57. PubMed ID: 23811405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.