BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25230361)

  • 1. Functional mapping of the zebrafish early embryo proteome and transcriptome.
    Alli Shaik A; Wee S; Li RH; Li Z; Carney TJ; Mathavan S; Gunaratne J
    J Proteome Res; 2014 Dec; 13(12):5536-50. PubMed ID: 25230361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Survey of the Impact of Deyolking on Biological Processes Covered by Shotgun Proteomic Analyses of Zebrafish Embryos.
    Rahlouni F; Szarka S; Shulaev V; Prokai L
    Zebrafish; 2015 Dec; 12(6):398-407. PubMed ID: 26439676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics Analysis of Early Developmental Stages of Zebrafish Embryos.
    Purushothaman K; Das PP; Presslauer C; Lim TK; Johansen SD; Lin Q; Babiak I
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31861170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zebrafish brain proteomics reveals central proteins involved in neurodegeneration.
    Gebriel M; Prabhudesai S; Uleberg KE; Larssen E; Piston D; Bjørnstad AH; Møller SG
    J Neurosci Res; 2014 Jan; 92(1):104-15. PubMed ID: 24123299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of RNA-Binding Protein Landscapes Across Zebrafish Embryonic Transcriptome via iCLIP Approach.
    Despic V
    Methods Mol Biol; 2021; 2218():331-345. PubMed ID: 33606243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome dynamics and diversity in the early zebrafish embryo.
    Aanes H; Collas P; Aleström P
    Brief Funct Genomics; 2014 Mar; 13(2):95-105. PubMed ID: 24335756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online automated in vivo zebrafish phosphoproteomics: from large-scale analysis down to a single embryo.
    Lemeer S; Pinkse MW; Mohammed S; van Breukelen B; den Hertog J; Slijper M; Heck AJ
    J Proteome Res; 2008 Apr; 7(4):1555-64. PubMed ID: 18307296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study of proteomic profile of Danio rerio embryos using one-dimensional electrophoresis and mass spectrometry].
    Kisrieva IuS; Petushkova NA; Chernobrovkin AS; Larina OV; Trifonova OP; Samenkova NF; Kuznetsova GP; Karuzina II; Kashirtseva VN; Beliaeva NF; Lisitsa AV
    Biomed Khim; 2011; 57(6):593-603. PubMed ID: 22359915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding the zebrafish embryo proteome using multiple fractionation approaches and tandem mass spectrometry.
    Lößner C; Wee S; Ler SG; Li RH; Carney T; Blackstock W; Gunaratne J
    Proteomics; 2012 Jun; 12(11):1879-82. PubMed ID: 22653788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome profile of zebrafish Danio rerio olfactory bulb based on two-dimensional gel electrophoresis matrix-assisted laser desorption/ionization MS/MS analysis.
    Singh SK; Saxena S; Meena Lakshmi MG; Saxena P; Idris MM
    Zebrafish; 2011 Dec; 8(4):183-9. PubMed ID: 22181661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome analysis of a single zebrafish embryo using three different digestion strategies coupled with liquid chromatography-tandem mass spectrometry.
    Lin Y; Chen Y; Yang X; Xu D; Liang S
    Anal Biochem; 2009 Nov; 394(2):177-85. PubMed ID: 19643073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of hoxb1b downstream genes: hoxb1b as a regulatory factor controlling transcriptional networks and cell movement during zebrafish gastrulation.
    van den Akker WM; Durston AJ; Spaink HP
    Int J Dev Biol; 2010; 54(1):55-62. PubMed ID: 19876844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cystic fibrosis transmembrane conductance regulator (CFTR) regulates embryonic organizer formation during zebrafish early embryogenesis.
    Liu Y; Lin Z; Sun H
    Int J Dev Biol; 2020; 64(7-8-9):409-413. PubMed ID: 33063835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the zebrafish proteome during embryonic development.
    Lucitt MB; Price TS; Pizarro A; Wu W; Yocum AK; Seiler C; Pack MA; Blair IA; Fitzgerald GA; Grosser T
    Mol Cell Proteomics; 2008 May; 7(5):981-94. PubMed ID: 18212345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel deep transcriptome and proteome analysis of zebrafish larvae.
    Palmblad M; Henkel CV; Dirks RP; Meijer AH; Deelder AM; Spaink HP
    BMC Res Notes; 2013 Oct; 6():428. PubMed ID: 24156766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free quantitative analysis of the membrane proteome of Bace1 protease knock-out zebrafish brains.
    Hogl S; van Bebber F; Dislich B; Kuhn PH; Haass C; Schmid B; Lichtenthaler SF
    Proteomics; 2013 May; 13(9):1519-27. PubMed ID: 23457027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatio-temporal expression of chromogranin A during zebrafish embryogenesis.
    Xie J; Wang WQ; Liu TX; Deng M; Ning G
    J Endocrinol; 2008 Sep; 198(3):451-8. PubMed ID: 18586978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic fingerprinting reveals developmental regulation of metabolites during early zebrafish embryogenesis.
    Papan C; Chen L
    OMICS; 2009 Oct; 13(5):397-405. PubMed ID: 19630505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of dynamic proteomic profiles between in vivo and in vitro produced mouse embryos during postimplantation period.
    Nie J; An L; Miao K; Hou Z; Yu Y; Tan K; Sui L; He S; Liu Q; Lei X; Wu Z; Tian J
    J Proteome Res; 2013 Sep; 12(9):3843-56. PubMed ID: 23841881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of muscle fibre-type diversity during embryonic development: the zebrafish paradigm.
    Jackson HE; Ingham PW
    Mech Dev; 2013; 130(9-10):447-57. PubMed ID: 23811405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.