These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 25230384)
21. Anisotropic, Polarizable Molecular Mechanics Studies of Inter- and Intramolecular Interactions and Ligand-Macromolecule Complexes. A Bottom-Up Strategy. Gresh N; Cisneros GA; Darden TA; Piquemal JP J Chem Theory Comput; 2007 Nov; 3(6):1960-1986. PubMed ID: 18978934 [TBL] [Abstract][Full Text] [Related]
22. Electron attachment to the guanine-cytosine nucleic acid base pair and the effects of monohydration and proton transfer. Gupta A; Jaeger HM; Compaan KR; Schaefer HF J Phys Chem B; 2012 May; 116(19):5579-87. PubMed ID: 22530702 [TBL] [Abstract][Full Text] [Related]
23. Polarizable model potential function for nucleic acid bases. Nakagawa S J Comput Chem; 2007 Jul; 28(9):1538-1550. PubMed ID: 17342710 [TBL] [Abstract][Full Text] [Related]
24. (G-H)*-C and G-(C-H)* radicals derived from the guanine.cytosine base pair cause DNA subunit lesions. Bera PP; Schaefer HF Proc Natl Acad Sci U S A; 2005 May; 102(19):6698-703. PubMed ID: 15814617 [TBL] [Abstract][Full Text] [Related]
25. Prediction of interaction energies of substituted hydrogen-bonded Watson-Crick cytosine:guanine(8X) base pairs. Xue C; Popelier PL J Phys Chem B; 2009 Mar; 113(10):3245-50. PubMed ID: 19260717 [TBL] [Abstract][Full Text] [Related]
26. G.C base pair in parallel-stranded DNA--a novel type of base pairing: an ab initio quantum chemical study. Sponer J; Hobza P J Biomol Struct Dyn; 1994 Dec; 12(3):671-80. PubMed ID: 7727065 [TBL] [Abstract][Full Text] [Related]
27. Could an anisotropic molecular mechanics/dynamics potential account for sigma hole effects in the complexes of halogenated compounds? El Hage K; Piquemal JP; Hobaika Z; Maroun RG; Gresh N J Comput Chem; 2013 May; 34(13):1125-35. PubMed ID: 23386428 [TBL] [Abstract][Full Text] [Related]
28. Interaction of cyclic cytosine-, guanine-, thymine-, uracil- and mixed guanine-cytosine base tetrads with K+, Na+ and Li+ ions -- a density functional study. Meyer M; Sühnel J J Biomol Struct Dyn; 2003 Feb; 20(4):507-17. PubMed ID: 12529150 [TBL] [Abstract][Full Text] [Related]
29. Hydrogen-Bond Strength of CC and GG Pairs Determined by Steric Repulsion: Electrostatics and Charge Transfer Overruled. van der Lubbe SCC; Fonseca Guerra C Chemistry; 2017 Aug; 23(43):10249-10253. PubMed ID: 28485530 [TBL] [Abstract][Full Text] [Related]
30. π-Stacking effects on the hydrogen bonding capacity of methyl 2-naphthoate. Akher FB; Ebrahimi A J Mol Graph Model; 2015 Sep; 61():115-22. PubMed ID: 26209766 [TBL] [Abstract][Full Text] [Related]
31. Potential-derived point-charge model study of electrostatic interactions in DNA base components. Ray NK; Shibata M; Bolis G; Rein R Chem Phys Lett; 1984 Aug; 109(4):352-8. PubMed ID: 11541979 [TBL] [Abstract][Full Text] [Related]
32. Substituent Effects in Multivalent Halogen Bonding Complexes: A Combined Theoretical and Crystallographic Study. Bauzá A; Quiñonero D; Frontera A Molecules; 2017 Dec; 23(1):. PubMed ID: 29271896 [TBL] [Abstract][Full Text] [Related]
33. Conformational analysis of a polyconjugated protein-binding ligand by joint quantum chemistry and polarizable molecular mechanics. Addressing the issues of anisotropy, conjugation, polarization, and multipole transferability. Goldwaser E; de Courcy B; Demange L; Garbay C; Raynaud F; Hadj-Slimane R; Piquemal JP; Gresh N J Mol Model; 2014 Nov; 20(11):2472. PubMed ID: 25367040 [TBL] [Abstract][Full Text] [Related]
34. Interaction of Ia and IIa group cations with the guanine site in cytosine-guanine nucleic acid base pair: an ab initio Hartree Fock study in the absence of basis set superposition error. Famulari A; Moroni F; Sironi M; Raimondi M Comput Chem; 2000 May; 24(3-4):341-9. PubMed ID: 10816004 [TBL] [Abstract][Full Text] [Related]
35. Investigation of base pairs containing oxidized guanine using ab initio method and ABEEMσπ polarizable force field. Liu C; Wang Y; Zhao D; Gong L; Yang Z J Mol Graph Model; 2014 Feb; 47():62-76. PubMed ID: 24322440 [TBL] [Abstract][Full Text] [Related]
36. The protonated guanine-cytosine base pair. Wang H; Zhang JD; Schaefer HF Chemphyschem; 2010 Feb; 11(3):622-9. PubMed ID: 20039356 [TBL] [Abstract][Full Text] [Related]
37. Noncovalent interactions between modified cytosine and guanine DNA base pair mimics investigated by terahertz spectroscopy and solid-state density functional theory. King MD; Korter TM J Phys Chem A; 2011 Dec; 115(50):14391-6. PubMed ID: 22107026 [TBL] [Abstract][Full Text] [Related]
38. Ab initio molecular orbital evaluation of the hydrogen bond energy of base pairs formed between substituted 1-methylcytosine derivatives and 9-methylguanine. Kawahara S; Kobori A; Taira K; Sekine M; Uchimaru T Nucleic Acids Res Suppl; 2001; (1):29-30. PubMed ID: 12836248 [TBL] [Abstract][Full Text] [Related]
39. A theoretical study of structures and electron affinities of radical anions of guanine-cytosine, adenine-thymine, and hypoxanthine-cytosine base pairs. Kumar A; Knapp-Mohammady M; Mishra PC; Suhai S J Comput Chem; 2004 Jun; 25(8):1047-59. PubMed ID: 15067680 [TBL] [Abstract][Full Text] [Related]
40. Binding modes of two novel dinucleotide inhibitors of HIV-1 integrase. Guenther S; Nair V Bioorg Med Chem Lett; 2002 Aug; 12(16):2233-6. PubMed ID: 12127545 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]