These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 25230463)
1. A mechanistic-bioclimatic modeling analysis of the potential impact of climate change on biomes of the Tibetan Plateau. Ye JS; Reynolds JF; Li FM Ecology; 2014 Aug; 95(8):2109-20. PubMed ID: 25230463 [TBL] [Abstract][Full Text] [Related]
2. Vegetation net primary productivity and its response to climate change during 2001-2008 in the Tibetan Plateau. Gao Y; Zhou X; Wang Q; Wang C; Zhan Z; Chen L; Yan J; Qu R Sci Total Environ; 2013 Feb; 444():356-62. PubMed ID: 23280293 [TBL] [Abstract][Full Text] [Related]
3. Convergence across biomes to a common rain-use efficiency. Huxman TE; Smith MD; Fay PA; Knapp AK; Shaw MR; Loik ME; Smith SD; Tissue DT; Zak JC; Weltzin JF; Pockman WT; Sala OE; Haddad BM; Harte J; Koch GW; Schwinning S; Small EE; Williams DG Nature; 2004 Jun; 429(6992):651-4. PubMed ID: 15190350 [TBL] [Abstract][Full Text] [Related]
4. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Gao Q; Guo Y; Xu H; Ganjurjav H; Li Y; Wan Y; Qin X; Ma X; Liu S Sci Total Environ; 2016 Jun; 554-555():34-41. PubMed ID: 26950617 [TBL] [Abstract][Full Text] [Related]
5. Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Xu X; Sherry RA; Niu S; Li D; Luo Y Glob Chang Biol; 2013 Sep; 19(9):2753-64. PubMed ID: 23649795 [TBL] [Abstract][Full Text] [Related]
6. [Responses of normalized difference vegetation index (NDVI) to precipitation changes on the grassland of Tibetan Plateau from 2000 to 2015.]. Wang ZP; Zhang XZ; He YT; Li M; Shi PL; Zu JX; Niu B Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):75-83. PubMed ID: 29692015 [TBL] [Abstract][Full Text] [Related]
7. Shifting plant species composition in response to climate change stabilizes grassland primary production. Liu H; Mi Z; Lin L; Wang Y; Zhang Z; Zhang F; Wang H; Liu L; Zhu B; Cao G; Zhao X; Sanders NJ; Classen AT; Reich PB; He JS Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4051-4056. PubMed ID: 29666319 [TBL] [Abstract][Full Text] [Related]
8. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Shen M; Piao S; Cong N; Zhang G; Jassens IA Glob Chang Biol; 2015 Oct; 21(10):3647-56. PubMed ID: 25926356 [TBL] [Abstract][Full Text] [Related]
9. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013. Liu L; Zhang X; Donnelly A; Liu X Int J Biometeorol; 2016 Oct; 60(10):1563-1575. PubMed ID: 26936843 [TBL] [Abstract][Full Text] [Related]
10. Precipitation-productivity relationships and the duration of precipitation anomalies: An underappreciated dimension of climate change. Felton AJ; Knapp AK; Smith MD Glob Chang Biol; 2021 Mar; 27(6):1127-1140. PubMed ID: 33295684 [TBL] [Abstract][Full Text] [Related]
11. [Effects of precipitation changes on the precipitation use efficiency and aboveground productivity of alpine steppe-meadow on northern Tibetan Plateau, China.]. Wang ZP; Zhang XZ; He YT; Shi PL; Zu JX; Niu B; Li M Ying Yong Sheng Tai Xue Bao; 2018 Jun; 29(6):1822-1828. PubMed ID: 29974690 [TBL] [Abstract][Full Text] [Related]
12. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts. Vogt DJ; Vogt KA; Gmur SJ; Scullion JJ; Suntana AS; Daryanto S; Sigurðardóttir R Environ Res; 2016 Jan; 144(Pt B):27-38. PubMed ID: 26552634 [TBL] [Abstract][Full Text] [Related]
13. Characteristics and scenarios projection of climate change on the Tibetan Plateau. Hao Z; Ju Q; Jiang W; Zhu C ScientificWorldJournal; 2013; 2013():129793. PubMed ID: 23970827 [TBL] [Abstract][Full Text] [Related]
14. Determining the contributions of climate change and human activities to the vegetation NPP dynamics in the Qinghai-Tibet Plateau, China, from 2000 to 2015. Guo B; Han B; Yang F; Chen S; Liu Y; Yang W Environ Monit Assess; 2020 Sep; 192(10):663. PubMed ID: 32989603 [TBL] [Abstract][Full Text] [Related]
15. Assessment of varying changes of vegetation and the response to climatic factors using GIMMS NDVI3g on the Tibetan Plateau. Zhou Y; Fan J; Wang X PLoS One; 2020; 15(6):e0234848. PubMed ID: 32555722 [TBL] [Abstract][Full Text] [Related]
16. Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Bai Y; Wu J; Xing Q; Pan Q; Huang J; Yang D; Han X Ecology; 2008 Aug; 89(8):2140-53. PubMed ID: 18724724 [TBL] [Abstract][Full Text] [Related]
17. Temperature leads to annual changes of plant community composition in alpine grasslands on the Qinghai-Tibetan Plateau. Ganjurjav H; Gornish ES; Hu G; Wan Y; Li Y; Danjiu L; Gao Q Environ Monit Assess; 2018 Sep; 190(10):585. PubMed ID: 30209621 [TBL] [Abstract][Full Text] [Related]
18. Spatial-temporal analysis of net primary production (NPP) and its relationship with climatic factors in Iran. Kamali A; Khosravi M; Hamidianpour M Environ Monit Assess; 2020 Oct; 192(11):718. PubMed ID: 33083919 [TBL] [Abstract][Full Text] [Related]
19. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau. Sun J; Qin X; Yang J Environ Monit Assess; 2016 Jan; 188(1):20. PubMed ID: 26661956 [TBL] [Abstract][Full Text] [Related]
20. Does climate directly influence NPP globally? Chu C; Bartlett M; Wang Y; He F; Weiner J; Chave J; Sack L Glob Chang Biol; 2016 Jan; 22(1):12-24. PubMed ID: 26442433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]